

International Journal of Information Technology and Applied Sciences

ISSN (2709-2208)

Int. J. Inf. Tec. App. Sci. 2, No.4 (October-2020)

 http://woasjournals.com/index.php/ijitas

30

https://doi.org/10.52502/ijitas.v2i4.13

An algorithm to calculates an allocation maximizing the

leximin order on the utility profiles of the agents

Sylvain Bouveret, Michel Lemaître

1 Office National d’Études et de Recherche Aérospatiales, Centre de Toulouse, France

E-mail address: sylvain.bouveret@onera.fr, michel.lemaitre@onera.fr

Abstract: Allocating a limited set of resources equitably and efficiently to agents each with their own preferences is a general

problem of considerable significance. Many examples of this problem are commonly found, among which we can cite the

construction of schedules, the sharing of communication networks, the management of airport resources involving several

companies, the sharing of airspace between different users, sharing of satellite resources. In the context of constraint programming,

we propose an algorithm solving the following problem: allocate in an equitable and efficient way a finite set of objects to agents

each having their own utilities, under admissibility constraints. The algorithm calculates an allocation maximizing the leximin order

on the utility profiles of the agents. We also describe the field of application that motivated this work: the sharing of satellite

resources. We extract from it a simple and precise problem of fair allocation, which serves as a basis, thanks to a generator of test

sets, for the evaluation of the proposed algorithm. Two implementations of the algorithm are compared, one in "pure" constraint

programming, with Choco, the other in mixed linear programming with Cplex.

Keywords: Machine Learning, detection systems.

1. INTRODUCTION

Allocating a limited set of resources equitably and
efficiently to agents each with their own preferences is a
general problem of considerable significance. Many
examples of this problem are commonly found, among
which we can cite the construction of schedules, the
sharing of communication networks, the management of
airport resources involving several companies, the sharing
of airspace between different users, sharing of satellite
resources.

In this article, we approach this problem with four
restrictive assumptions, but which still leave a very wide
field of application:

1) the resources are discrete, finite, and come down to

distinct, indivisible objects in finite number.

2) An agent preference on eligible allocations is

expressed numerically.

3) We are looking for fair and efficient allocations -

the meaning of these words will be clarified and

discussed later.

4) The search for a satisfactory allocation is carried

out centrally by an "arbitrator" who is supposed to

be fair and impartial and obeys principles accepted

by all agents.

In other words, we are not interested here in allocation
or negotiation procedures distributed among agents. This
marked economic problem affects several active research
fields: Operational Research (OR), Artificial Intelligence
(AI), Microeconomics, Social Choice theory. Our
contribution draws on these different areas. From the last
two we borrow the idea of utility to translate numerical
preferences, and the comparison by the leximin order to
reflect the requirement of fairness and efficiency. OR and
AI provide us with the framework for constraint
programming, in which we provide a simple, centralized
algorithm for finding leximin-optimal allocations.
Numerical preferences and utilities Let be a finite set of
admissible alternatives S, in which an arbiter must choose
an alternative involving n agent, each having its own
preferences. The most classic model of this situation is
that of welfarism (see for example [13, 18]). According to
this model, which we adopt here, the arbitrator's decision
elements are entirely contained in the data, for each agent
and for each alternative, of his level of "well-being". This
level is measured, in the cardinal version of the model, by
a numerical index measuring the individual utility ui (s) of
agent i for the alternative s. It is assumed that the
individual utilities are comparable between agents (they
are given on a common scale of utilities). To each
alternative s therefore corresponds a utility profile hu1 (s),
. . ., one (s) i and the comparison between two alternatives
is made on the sole basis of the two associated profiles.

http://woasjournals.com/index.php/ijitas
https://doi.org/10.52502/ijitas.v2i4.13

Int. J. Inf. Tec. App. Sci. 2, No.4, 30-34 (Oct-2020)

http://woasjournals.com/index.php/ijitas

31

A convenient way to compare individual utility

profiles is to aggregate each into a collective utility index

representing the collective welfare of the agent firm.

Thus, to each alternative s ∈ S will correspond a

collective utility uc (s) = g (u1 (s),..., Un (s)), where g is a

well-chosen aggregation function. An optimal decision is

one that maximizes this collective utility.

2. FORMEL SETTING

The constraint programming framework is widely
used in solving combinatorial problems as diverse as
scheduling, planning, and frequency allocation problems.
This paradigm is based on the notion of a constraint
network. A constraint network is formed by a set of
variables X = {x1,..., xp}, of a set of domains D = {dx1,. .
. , dxp}, where dxi is a finite set of possible values for xi
(we

suppose that dxi ⊂ N, and denote by xi = min (dxi)
and xi = max (dxi)), and a set of constraints C. Each

constraint C ∈ C specifies a set of allowed tuples R (C)

over a set of variables X (C). An instantiation v of a set S

of variables is an application which to any variable x ∈ S

associates a value v (x) of its domain dx. If S = X, this

instantiation is complete, otherwise, it is partial. If S ′

(S, the projection of an instantiation of S on S ′ is the

restriction of this instantiation to S ′ and is denoted v ↓

S ′. An instantiation is consistent if and only if it does

not violate any constraint. a constraint network, the
problem of existence of a complete instantiation
consistent with this constraint network is called the
Constraint Satisfaction Problem (CSP) [16] and is NP-
complete. solution of the CSP There is a variation of the
CSP in optimization problem (resulting from the max-
CSP extension of constraint satisfaction problems), in
which a variable o plays the role of objective variable. of
this optimization problem is a coherent complete
instantiation bv of the constraint network such that bv (o)

= max {v ′ (o) | v ′ coherent complete instantiation}.

Let - → x = hx1,. . . , xni a vector of integers; we

denote - → x ↑ = hx ↑ 1,. . . , x ↑ nor the non-

descending ordered version of this vector. We define the
leximin order on the integer vectors.

3. PROPOSED ALGORITHM

The principle of Algorithm 1 is to iteratively calculate
each component of the vector corresponding to the

ordered values of the leximin-optimal instantiation of - →

u. For this, we introduce in lines 3 and 4 a vector of
optimization variables, the role of each variable yi being
to calculate the value of the index i of the leximin-optimal

(we will note m = min {ui | 1 ≤ i ≤ n} and M = max {ui

| 1 ≤ i ≤ n}). To each iteration i of loop 6..10, we add a

cardinality constraint corresponding to the component
being calculated (line 7), and we calculate (line 8) the
maximum value ofSupervised learning Supervised

learning responds to this need to integrate expert
knowledge. Indeed, a supervised detection model is
constructed from labeled data provided by the expert:
mild events, but also malicious events to guide the
detection model. The learning algorithm will
automatically look for the points allowing to characterize
each of the classes or to discriminate them to build the
detection model. Once the detection model is learned on a
training dataset, it can be applied automatically to detect
malicious events.

Thanks to supervised learning, the security operator
supervising the detection system can easily participate in
improving the detection model based on the alerts that he
analyzes. Indeed, false alerts can be reinjected to correct
the detection model and thus avoid generating the same
false alerts in the future. The real alerts can also be fed
back into the model to let it follow the evolution of the
threat. Thus, security experts do not give control of the
detection system to an automatic model, but they actively
supervise it to improve its performance over time [16].

Also, supervised learning is guided by malicious
examples provided by the expert, which reduces the rate
of false positives compared to the detection of anomalies.
Supervised methods are therefore to be preferred when
labeled data are available to train the detection model.
However, these methods must be applied taking into
account the operational constraints of the detection
systems. The detection model must be able to process data
in real time, and the false positive rate must remain below
a certain threshold to prevent the security operator from
being overwhelmed by false alerts.

Finally, the administrator must have confidence in the
model to put it into production, and the operator must be
able to understand the alerts generated. In the rest of the
paper, we give a methodology so that machine learning
meets these constraints, and so that it can be integrated
into detection systems to better detect new threats. the
variable yi such that the current constraint network (which
corresponds to the initial network added to the variables
yk and the cardinality constraints of the preceding
iterations) has a solution. The variable yi is set at this
optimal value (line 9) for all subsequent iterations. Line
10 safely restricts the domain of the next variable yi + 1;
however, the tests show that it does not significantly
influence the computation times, certainly because the
constraint propagation is able to filter very quickly this
part of the domain of yi + 1.

Moreover, for all j i + 1, dvi + 1 (-! U) ↑ j dvi + 1 (yj)

(otherwise at least one of the AtLeast constraints is

violated). By noting that an allowable allocation for (X ′
, D ′ , C ′) at iteration i + 1 is also admissible at

iteration i (because between two successive iterations we
only add a constraint and reduce the domain of a

variable), we deduce that we cannot have dvi + 1 (-! u) ↑

j> dvi + 1 (yj). Indeed, in this case, since dvi + 1 (yj) = b
vj (yj) (for j <i + 1, the domain of yj is a singleton), dvi +

http://woasjournals.com/index.php/ijitas

 Bouveret et al.: An algorithm to calculates an allocation maximizing the leximin order on the utility profiles…

http://woasjournals.com/index.php/ijitas

32

1 would have been strictly better than b vj for yj at
iteration j, and if maximize is correct, it is not possible.

So 8j i + 1, dvi + 1 (-! U) ↑ j = dvi + 1 (yj), which

proves the first equality. The extension of b vs which

affects the value b vs (-! U) ↑ i + 1 to yi + 1 is feasible at

iteration i + 1 (it satisfies, in addition to the other
constraints, the AtLeast constraint of the iteration i + 1).

So dvi + 1 (yi + 1) b vs (-! U) ↑ i + 1. If we had dvi + 1

(yi + 1)> b vs (-! U) ↑ i + 1, then the projection of dvi +

1 on X would be a solution of this constraint network such

that 8j <i + 1 , dvi + 1 (-! u) ↑ j = b vs (-! u) ↑ j and dvi

+ 1 (-! u) ↑ i + 1> b vs (-! u) ↑ i + 1, so a solution

leximin-greater than b vs, which is not possible. We

therefore have dvi + 1 (yi + 1) = b vs (-! U) ↑ i + 1,

which completes proving (Hi + 1). By induction, we
therefore have: (1) cvn is a solution of the constraint
network at iteration n, so a fortiori, its projection on X is a

solution and (2) for all i, cvn (-! U) ↑ i = b vs (-! u) ↑ i,

so cvn (-! u) and b vs (-! u) are leximin indifferent. So the
instantiation returned by the algorithm is indeed a solution
of the [Leximin-] problem. If constraint programming
lends itself particularly well to the implementation of this
algorithm, the cardinality meta-constraint used in the
algorithm is also expressed in the field of linear
programming [10, p.11] thanks to the introduction of n

variables 0–1 {1,..., n}. The meta-constraint AtLeast

({x1 ≥ y,..., Xn ≥ y}, k) is equivalent to the set of linear

constraints {x1 + 1y ≥ y,. . . , xn + ny ≥ y, Pn i = 1 i ≤

n - k}.

4. APPLICATION TO A PROBLEM OF SHARING

SATELLITE RESOURCES

We now describe the application that motivated this
work, and which we used to experiment and evaluate the
proposed algorithm in a realistic situation.

A. Description of the application

The application concerns the joint operation, by
several agents (countries, international organizations...),
Of a constellation of Earth observation satellites. The
mission of this type of satellite is, as shown in Figure 1, to
acquire photographs of the Earth, in response to requests
for photographs filed by agents. These agents deposit, at
the limit of the satellite visibility corridor, photographs in
the process of being acquired orbit photographs not
acquired photographs acquired Figure 1 - Acquisition of a
photograph by an Earth observation satellite. from a
common planning center, photography requests valid for a
given day. The overall planning of the shots of all the
satellites in the constellation is organized by successive
time intervals, generally 1 day. The planning center
therefore determines, among the requests concerning a
given day, the set of requests that will be satisfied, that is
to say all the photographs that will be acquired on that day
by the constellation. This set of satisfied requests
constitutes a daily allocation of requests to agents. The
physical operating constraints and the large number of
requests concerning certain areas generate conflicts
between requests. It is therefore generally impossible to
simultaneously satisfy all the requests filed for a given
day. In other words, only a subset of the requests will be
able to be satisfied. All these constraints define the set of
eligible allowances. Here are some orders of magnitude
regarding the real problem. The agents are between 3 and
6. Several hundred applications are candidates each day,
among which 100 to 200 will be satisfied. The demands
of an agent are of unequal importance. Each agent
translates the relative importance of its requests by
associating to each a weight, which is a positive or zero
number 4, and implicitly corresponds to additive
preferences: given two sets of requests of an agent whose
sum of the weights is identical, the agent concerned is
indifferent to obtaining one or the other set of requests.
The individual utility of an allowance for an agent is the
sum of the weights of its demands satisfied by the
allowance. A utility standardization device - details of
which do not concern this article - is used in order to
make individual utilities comparable. Here we implicitly
consider normalized utilities (and weights). Not all agents
contributed equally to the funding of the constellation; the
“right of return on investment” provided for each is
therefore different. There are different ways of taking into
account these different rights. We translate this inequality
here by consumption constraints (in addition to the
eligibility constraints): each agent is entitled to a
maximum consumption of resources per day, this
maximum being different for each agent. Beyond taking

http://woasjournals.com/index.php/ijitas

Int. J. Inf. Tec. App. Sci. 2, No.4, 30-34 (Oct-2020)

http://woasjournals.com/index.php/ijitas

33

these unequal rights into account, the allocation of
requests to agents must be fair. Quite different solutions to
this problem have been proposed in [15], then in [6]. To
meet the fairness requirement, one of the proposed sharing
protocols is to choose an allocation that maximizes the
leximin order on the individual utility profiles.

B. Fair allocation problem

We have drawn from this application a simplified
problem of equitable allocation of objects to agents. It
takes the form of an extension of the Leximin-Optimal
problem described in section 2. The objects correspond to
the demands of our application. The conflicts between
demands are modeled in an approximate but suitable way
in the form of "generalized volume constraints", linear.
Note that in this problem (1) all the objects will not
necessarily be allocated, and (2) the same object can be
allocated to several agents 5. Here is the formal
description of this fair allocation problem. First the data:

- A is a set of agents.

- O is a set of objects to be allocated to agents.

- wio, positive or zero number, is the weight
assigned to the object o by agent i;

- ro is the resource consumed by the object o.

- rmax is the maximum consumption of resources
authorized for agent i;

- This is the set of generalized volume constraints.

- vco is the volume of the object o in the constraint
of generalized volume c.

- vmaxc is the maximum volume in the generalized
volume constraint c.

We now define the following variables:

5. What is possible in our application.

- xio = 1 if the object o is allocated to agent i, and 0

otherwise, o ∈ O, i ∈ A. The possible

assignments of the variables xio represent the set
of possible allocations (among which are the
admissible ones).

- ui = Po∈O xio · wio is the individual utility of

agent i, i ∈ A;

- so = maxi∈A xio = 1 if the object o is allocated

to at least one agent, and 0 otherwise. The
problem is to find an allocation x maximizing the

leximin order on the huiii∈A utility profiles,

under the following admissibility constraints:

- wio = 0 ⇒ xio = 0 (objects of zero weight are not
allocated to an agent having assigned this weight)
6;

- Po∈O xio · ro ≤ rmaxi, for all i ∈ A (resource

consumption constraints);

- Po∈O so · vco ≤ vmaxc, for all c ∈ C

(generalized volume constraints).

5. CONCLUSIONS AND PERSPECTIVES

We have studied the general problem of equitably
allocating a set of indivisible goods to agents, in the
presence of any admissibility constraints, each agent
having its own utility function on the eligible allocations.
We

We have translated equity by a Paretoeeffective
particularization of the maximin on the utilities of agents:
the notion of leximin-optimal allocation, which potentially
applies to all multi-agent allocation problems for which
the notion of equity has a strong meaning. The main
contribution of this article is the proposal of an algorithm
for calculating a leximin-optimal allocation, in a
constraint programming framework (PPC), based on the
use of the cardinality meta-constraint AtLeast. The
general framework of PPC is particularly interesting here,
because it allows to separately describe the algorithm
dedicated to leximin, and on the other hand the utility
functions of the agents and the admissibility constraints
specific to each potential application. In a context where
many of the eligibility constraints are rarely set in stone
and evolve with the life of the application, tools like PPC
allow you to adapt quickly without changing everything.
This algorithm is precisely proposed in the context of a
real application: the sharing of satellite resources. From
this application we extracted a simplified multiagent
allocation problem for which we built a parameterized
random generator of instances. This allowed us to test two
implementations of the proposed algorithm, in PPC (with
Choco [14]), and in PLNE (with Cplex [12]). The results
obtained show a clear advantage in favor of PLNE, which
can be explained by the specificity of this framework
compared to PPC in our case. Several avenues remain to
be explored to make the PPC implementation more
efficient: heuristics for choosing the variables to
instantiate and for choosing the values of the domains,
and procedures for filtering the domains of Variables
(faster detection of inconsistent or sub-optimal solutions)
among others. The article is one algorithmic approach to
the problem among others, perhaps more effective. Even
if we have only considered exact methods here, we can
use, for more difficult instances, incomplete methods like
those of [20], or [21, 1] mixing linear programming and
taboo search. We hope that our instance generator (online)
will allow teams interested in the problem to propose and
validate other approaches.

Among the possible consequences of this work, let us
quote:

- the experimental comparison of the proposed
algorithm with the other algorithms mentioned in
section 5.

- the study of more flexible and general approaches
to equity, replacing the leximin order by a

http://woasjournals.com/index.php/ijitas

 Bouveret et al.: An algorithm to calculates an allocation maximizing the leximin order on the utility profiles…

http://woasjournals.com/index.php/ijitas

34

parameterized collective utility function making
compromises between egalitarianism and classical
utilitarianism.

- the application of the algorithm to other practical
fields, such as the construction of time schedules
or the sharing of airport resources. The authors
thank the reviewers for their insightful comments,
Jérôme Lang and Jean-Michel Lachiver for their
stimulating discussions on the subject, and Simon
de Givry for his advice on Cplex.

REFERENCES

[1] N. Bianchessi, J.-F. Cordeau, J. Desrosiers,G. Laporte,and V.

Raymond. A heuristic for the multisatellite,multi-orbit and multi-
user management of earth observation satellites. European Journal
of Operational Research, available online February 2006. doi
:10.1016/j.ejor.2005.12.026.

[2] N. Bleuzen-Guernalec and A. Colmerauer. Narrowing a block of
sortings in quadratic time. InProc. of CP’97, pages 2–16, Linz,
Austria, 1997. D. Dubois, H. Fargier, and H. Prade. Refinements
of the maximin approach to decision-making infuzzy
environment. Fuzzy Sets and Syst., 81 :103– 122, 1996.

[3] D. Dubois and P. Fortemps. Computing improvedoptimal
solutions to max-min flexible constraintsatisfaction problems.
European Journal of OperationalResearch, 1999.

[4] M. Ehrgott. Multicriteria Optimization. Number 491 in Lecture
Notes in Economics and Mathematical Systems. Springer, 2000.

[5] H. Fargier, J. Lang, M. Lemaître, and G. Verfaillie. Partage
équitable de ressources communes. (1) Un modèle général et son
application au partage de ressources satellitaires. (2) Éléments de
complexité et d’algorithmique. Technique et Science
Informatiques, 23(9) :1187–1238, 2004.

[6] H. Fargier, J. Lang, and T. Schiex. Selecting preferred solutions in
fuzzy constraint satisfaction problems. In Proc. of EUFIT’93,
Aachen, 1993.

[7] A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Multiset
ordering constraints. In Proc. of IJCAI’03, February 2003.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability, a
guide to the theory of NPcompleteness. Freeman, 1979.

[9] R. S. Garfinkel and G. L. Nemhauser. Integer Programming.
Wiley-Interscience, 1972.

[10] P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint
satisfaction using constraint logic programming. A.I., 58(1-3)
:113–159, 1992.

[11] ILOG. Cplex 10.0. http://www.ilog.com/products/cplex/.

[12] R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives :
Preferences and Value Tradeoffs. John Wiley and Sons, 1976.

[13] F. Laburthe. CHOCO: Implémentation du noyau d’un système de
contraintes. In Actes des JNPC-00, Marseille, France, 2000.
http://sourceforge.net/projects/choco.

[14] M. Lemaître, G. Verfaillie, and N. Bataille. Exploiting a Common
Property Resource under a Fairness Constraint : a Case Study. In
Proc. Of IJCAI-99, pages 206–211, Stockholm, 1999.

[15] U. Montanari. Networks of constraints : Fundamental properties
and applications to picture processing. Information Sciences, 7
:95–132, 1974.

[16] H. Moulin. Axioms of Cooperative Decision Making. Cambridge
University Press, 1988.

[17] H. Moulin. Fair division and collective welfare. MIT Press, 2003.

[18] G. Pesant and J-C. Régin. SPREAD : A balancing constraint
based on statistics. In Proc. of CP’05, Sitges, Spain, 2005.

[19] M. Vasquez and J.-K. Hao. A logic-constrained knapsack
formulation and a tabu algorithm for the daily photograph
scheduling of an earth observation satellite. Journal of
Computational Optimization and Applications, 20(2) :137–157,
2001.

[20] M. Vasquez and J.K. Hao. A Hybrid Approach for the 0–1
Multidimensional Knapsack Problem. In Proc. of IJCAI-01,
volume 1, pages 328–333, August 2001.

[21] R. Yager. On ordered weighted averaging aggregation operators in
multicriteria decision making. IEEE Transactions on Systems,
Man, and Cybernetics, 18 :183–190, 1988.

http://woasjournals.com/index.php/ijitas

