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Abstract: The purpose of this research work is to study the usage of machine learning in detecting malware. This paper presents a 

versatile framework, in which a dataset of more than 130000 files has been analyzed, to train and test four machine learning algorithms: 

Support Vector Machine, Decision Tree, Random Forest, and Gradient Boosting; The performance of each algorithm in malware 

classification, has been studied based on the: Accuracy, execution time, rate of false positives and false negatives, and area under the 

Receiver Operating Characteristic curve. 
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1. INTRODUCTION  

Computer viruses, or malware in general, have 

become one of the biggest problems for IT in recent years. 

This is evidenced by the millions of attacks per day on 

systems, especially in the era of Corona virus. Current 

antivirus products are unable to detect new viruses or 

variants of known viruses because they rely on the principle 

of signature-based methods. Although this method is very 

effective in detecting known viruses, it needs to be updated 

regularly to combat new viruses; this keeps virus 

programmers one step ahead of information security 

experts [1]. To solve this problem, machine learning 

methods and classifiers are used for computer virus 

detection. Since 2001, researchers and security experts 

have shown that this approach can indeed lead to successful 

malware detection [2].  

In this research, a machine learning approach was used 

for malware detection. For this purpose, 124987 malware 

samples and 10400 legitimate samples were collected. 

From the analyzed samples, 54 features were extracted to 

create a large dataset; this dataset was later used to train and 

test four malware classification algorithms; the 

performance of these algorithms was analyzed using the 

following criteria: Execution time, accuracy, false positive 

rate, false negative rate, and area under the ROC curve. 

A. Research Question 

This research will attempt to answer the following 

questions: 

• To what extent can machine learning be useful in 

malware detection? 

• How do the different machine learning 

algorithms perform in malware detection?  

B. Limitations of the Research 

The limitations of this research are as follows: 

• The files under study are Portable Executable 

(PE). 

• The algorithms studied are: SVM, Decision Tree, 

Gradient Boosting and Random Forest. 

• Since the algorithms used have many parameters, 

the default parameters were. 

 

2. DATA AND METHOD  

As mentioned earlier, 4 machine learning algorithms 

are used in this experiment. The method and framework 

used in this research are as follows: 

a) Collection of test files. 

b) Extracting many features from the binary files to 

get a good set of training data. 

c) Identifying the relevant features for the 

classification. 

d) Train and test each algorithm. 

e) Test the efficiency of each algorithm and 

determine the rate of false positives and false negatives. 

A. Collecting of Test Files 

To create a good data set that will produce accurate 
results, it is important to have a large number of both 
legitimate and malicious files. The malicious files used in 
this work were obtained from the VirusShare website by 
contacting them. Legitimate files were downloaded from 
various websites on the Internet (standard Windows 
applications were also used). 
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• The number of malicious files used in this 
research is: 124987 

• The number of legitimate files used in this 
research is: 10400 

It is important to be careful when working with 
malicious files to avoid getting infected or causing a 
malware outbreak. 

B. Extracting features from files 

The first step in supervised machine learning is to create 
a dataset. The feature dataset is extracted from the 
previously collected files. The features that are extracted 
from the files are the PE headers. Before citing these 
features, take a look at the format of a PE file [3]; the 
following figure shows the general format of a PE file: 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. Format of a PE file 

 

Machine learning uses integer or float data as 

recognition functionalities [4], most of the parameters of 

PE are already integer values (FieldSize, addresses, 

entropy...). The parameters of PE were extracted using the 

"pefile" library in Python. Upon extraction, relevant 

features were considered [5], below is the final list of 

extracted features: 

AddressOfEntryPoint, BaseOfCode, BaseOfData, 

Characteristics, checksum, DllCharacteristics, ExportNb, 

FileAlignment, ImageBase, ImportsNb, ImportsNbDLL,  

ImportsNbOrdinal,  LoadConfigurationSize, 

LoaderFlags,machine, MajorImageVersion,  

MajorLinkerVersion, MajorOperatingSystemVersion, 

MajorSubsystemVersion, md5, MinorImageVersion, 

MinorLinkerVersion, MinorOperatingSystemVersion, 

MinorSubsystemVersion, Name, 

NumberOfRvaAndSizes, ResourcesMaxEntropy, 

ResourcesMaxSize, ResourcesMeanEntropy, 

ResourcesMeanSize, ResourcesMinEntropy, 

ResourcesMinSize, ResourcesNb, SectionAlignment, 

SectionMaxRawsize, SectionMaxVirtualsize, 

SectionsMaxEntropy,  SectionsMeanEntropy, 

SectionsMeanRawsize, SectionsMeanVirtualsize,  

SectionsMinEntropy, SectionsMinRawsize, 

SectionsMinVirtualsize, SectionsNb, SizeOfCode, 

SizeOfHeaders, SizeOfHeapCommit, 

SizeOfHeapReserve, SizeOfImage, 

SizeOfInitializedData, SizeOfOptionalHeader, 

SizeOfStackCommit, SizeOfStackReserve, 

SizeOfUninitializedData, Subsystem, VersionInformation 

Size. 

C. Selecting the Relevant features 

The idea of relevant feature selection is to reduce the 

54 extracted features to a smaller set of features that are 

pertinent to distinguish legitimate files from malware files. 

The step of selecting relevant features is done by checking 

the difference between the values of features extracted 

from malicious and legitimate files. To process the data, 

Pandas [6], Scikit and Numpy libraries were used [7]. 

From the 54 features, 9 relevant features were selected 

and sorted according to their importance using the Extra 

Trees Classifier. The Trees classifier is based on an 

extraction of observations from the dataset and an 

extraction of attributes. For better interpretation, the 

attributes selected at the top of the tree are usually more 

important than the attributes selected at the end nodes of 

the tree because, in general, the higher subdivisions lead to 

greater information gain. The following figure (Figure 2) 

shows the selected relevant attributes and their importance: 

 

 

Figure 2. Relevant features and their importance 

 

D. Classifying 

      After selecting the relevant features, the next step is 

classification; in this research, four algorithms were used: 
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Decision Tree [8], Gradient Boosting [9], SVM [10] and 

Random Forest [8], as these algorithms require many 

parameters; this experience was done with default 

parameters. The dataset is split into two arrays: an array 

named "X" that contains all values for each row except the 

"legitimate" column, and an array named "y" that contains 

only the "legitimate" value for that row. The classification 

algorithms compare the attribute values of "X" with the 

corresponding values of "y" to detect patterns in how 

different attribute values tend to affect the legitimacy of a 

file. Finally, the "X" and "y" arrays are split into two parts, 

a training set and a test set. The training set is provided to 

the classification algorithm to form a trained model. Once 

the model is built, it is used to classify the test set to test 

the accuracy of the model. 

Before starting the training and testing, a timer 

was set using the time library in Python to track the 

execution time of each algorithm. The following flowchart 

shows the idea used in classification: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Training and testing flowchart 

E. Studying the Efficiency of Algorithms 

As mentioned earlier, the performance of each 

algorithm is measured by the following criteria: The 

running time, the accuracy, the rates of false positives and 

false negatives, and the AUC. 

The accuracy of the model is determined by the score 

function from the Scikit library in Python. 

The rates of false positives and false negatives are 

calculated using the confusion matrix [11]. Confusion 

matrix, also called error matrix, is a table that shows 

different predictions and test results and compares them 

with the actual values. These matrices are used in statistics, 

data mining, machine learning models and other artificial 

intelligence applications. 

 

 

TABLE I.  THE GENERAL FORMAT OF THE 

CONFUSION MATRIX 

 Actually 

Positive (1) 

Actually 

Negative (0) 

Predicted Positive (1) TP FN 
Predicted Negative (0) FP TN 

 

TP stands for True Positives; TN stands for True 

Negatives, FP stands for False Positives, while FN refers 

to False Negatives. The scikit library also provides a 

function that returns the confusion matrix. The values 

used to measure efficiency are calculated as follows: 

 

• False Positive rate (also called Fall out) is 

proportion of the incorrectly positive classified 

samples to all negative samples, it is calculated 

using the equation (1):  

 

 
𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(1) 

 

 

 

• False Negative rate is the proportion of positives 

which yield negative test outcomes with the test, 

it is calculated using the equation (2): 

 

 
𝐹𝑁𝑅 =

𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

 

(2) 

 

 

 

• The accuracy (also called score) is the proportion 

of the correctly classified samples to all samples, 

it is described in the equation (3):  

 

 

 
𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

(3) 

 

In this experience, the running time is calculated 

from the start of the training to the calculation of the 

confusion matrix.   

Area under ROC curve [12]: ROC curve is generally 

used in binary classification; It is constructed by plotting 

the TPR (True Positive Rate) on the Y-axis and the FRR 

(False Positive Rate) on the X-axis. The performance of 

each classifier is measured by the area under the ROC 

curve, where 0.5 represents random prediction and 1 

represents perfect prediction. 
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3.  FINDINGS 

A. Algorithms Performance 

         The following table shows the results of the 

performance criteria values for each of the tested 

algorithms: 

 

TABLE II.  EXPRIMENT RESULTS  

Algorithm Accuracy 

(%) 

Running 

Time (in sec) 

False 

positive 

Rate (%) 

False 

Negative 

Rate (%) 

Decision 

Tree 

99.449412 0.723649 0.208100 4.676953 

Gradient 

Boosting 

99.323775 9.116513 0.188090 6.557377 

Random 

Forest 

99.648954 11.185557 0.108052 3.278689 

SVM 99.434632 3009.639216 0.168081 5.351977 

 

B. Area Under Receiver Characteristic Operator 

Curve 

To get more insight on performance of all the 
algorithms in detecting the malware files, area under the 
ROC curve for all algorithms has been computed and 
plotted. The results are shown in Table 3 and ROC curves 
are presented in the Figure 4. 

TABLE III.  RESULTS OF AREA UNDER ROC 

CURVE FOR EACH ALGORITHM 

Algorithm AUC 

Decision Tree 0.9896 

Random Forest 0.9933 

Gradient Boosting 0.9950 

SVM 0.9910 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. ROC Curve 

 

4. DISCUSSION 

Although 54 features were used to detect malware files, 
not all were equally important in distinguishing malware 
files from legitimate files. Only 9 features proved to be 
relevant. This can be explained by looking at the nature of 
the malware binaries and the functionalities they are 
programmed to perform. For example, DLLCharacteristics 
is a relevant feature with an importance of over 0.25. This 
PE header was found to be relevant in identifying malware. 
Jinrong Bai (2014) interpreted this by explaining that most 
types of malware are executable images, while most parts 
of benign software are dynamic link libraries. therefore, the 
mean values of characteristics, ImageBase, and 
Dllcharacteristics show significant differences between 
malware and benign software [13]. 

From the experimental results, it can be inferred that all 
the algorithms used perform well in the accuracy 
measurement and achieve above 99%. While the Random 
Forest algorithm performed the best in terms of score and 
false negative rate, the Decision Tree algorithm performed 
the best in terms of execution time. On the other hand, the 
execution time of the SVM algorithm is strikingly high 
compared to the other algorithms, although the execution 
time depends on the CPU and does not give much 
indication of the performance in such experiments, but it 
still gives an idea of the computational operations per 
algorithm; the Gradient Boosting algorithm achieved a 
high false negative rate but a low false positive rate.  

Overall, Random Forest was found to be the best and 
most accurate algorithm used in this research. These results 
are in line with other research on the same topic, where the 
9 PE headers were also found to be relevant for malware 
classification. The only difference is in the importance of 
each feature and the accuracy of the algorithms. In many 
other studies, the algorithms did not achieve high accuracy 
while in this study the accuracy is higher. This can be 
explained by the fact that the dataset used in this study is 
much larger (more than 130000 files), which makes this 
study outstanding. 

5. CONCLUSION 

Malware attacks are becoming one of the biggest 

threats to national information security, especially in these 

pandemic times when cyber attacks are increasing 

tremendously. Malware programmers are developing new 

techniques every day to avoid detection. To counter these 

attacks, information security professionals must use new 

technologies to detect this malware. 

In this paper, we presented a method to classify 

malware using PE headers. More than 130000 files were 

used to create the dataset for training four machine 

learning algorithms. The efficiency of these algorithms 

was studied in terms of accuracy, execution time and 

UAC. Random Forest showed high performance 

compared to the other 3 algorithms with accuracy above 

99.64 percent and 0.9933 area under the ROC curve. 
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From the experimental results on UAC, accuracy, 

false positive rate, and false negative rate, it can be 

concluded that the proposed method can successfully 

detect malware with high accuracy. 
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