

International Journal of Information Technology and Applied Sciences

ISSN (2709-2208)

Int. J. Inf. Tec. App. Sci. 3, No.4 (October-2021)

 http://woasjournals.com/index.php/ijitas

167

https://doi.org/10.52502/ijitas.v3i4.172

Malware Detection Using a Machine-Learning Based

Approach

Safa Rkhouya1, Khalid Chougdali2

1 National School of Applied Sciences (ENSA) Ibn Tofail University, Kenitra, Morocco

2 Engineering Science Laboratory, National School of Applied Sciences (ENSA) Ibn Tofail University, Kenitra, Morocco

Abstract: The purpose of this research work is to study the usage of machine learning in detecting malware. This paper presents a

versatile framework, in which a dataset of more than 130000 files has been analyzed, to train and test four machine learning algorithms:

Support Vector Machine, Decision Tree, Random Forest, and Gradient Boosting; The performance of each algorithm in malware

classification, has been studied based on the: Accuracy, execution time, rate of false positives and false negatives, and area under the

Receiver Operating Characteristic curve.

Keywords: Malware classification, PE files, SVM , Decision Tree, Random Forest, Gradient Boosting, Machine Learning.

1. INTRODUCTION

Computer viruses, or malware in general, have

become one of the biggest problems for IT in recent years.

This is evidenced by the millions of attacks per day on

systems, especially in the era of Corona virus. Current

antivirus products are unable to detect new viruses or

variants of known viruses because they rely on the principle

of signature-based methods. Although this method is very

effective in detecting known viruses, it needs to be updated

regularly to combat new viruses; this keeps virus

programmers one step ahead of information security

experts [1]. To solve this problem, machine learning

methods and classifiers are used for computer virus

detection. Since 2001, researchers and security experts

have shown that this approach can indeed lead to successful

malware detection [2].

In this research, a machine learning approach was used

for malware detection. For this purpose, 124987 malware

samples and 10400 legitimate samples were collected.

From the analyzed samples, 54 features were extracted to

create a large dataset; this dataset was later used to train and

test four malware classification algorithms; the

performance of these algorithms was analyzed using the

following criteria: Execution time, accuracy, false positive

rate, false negative rate, and area under the ROC curve.

A. Research Question

This research will attempt to answer the following

questions:

• To what extent can machine learning be useful in

malware detection?

• How do the different machine learning

algorithms perform in malware detection?

B. Limitations of the Research

The limitations of this research are as follows:

• The files under study are Portable Executable

(PE).

• The algorithms studied are: SVM, Decision Tree,

Gradient Boosting and Random Forest.

• Since the algorithms used have many parameters,

the default parameters were.

2. DATA AND METHOD

As mentioned earlier, 4 machine learning algorithms

are used in this experiment. The method and framework

used in this research are as follows:

a) Collection of test files.

b) Extracting many features from the binary files to

get a good set of training data.

c) Identifying the relevant features for the

classification.

d) Train and test each algorithm.

e) Test the efficiency of each algorithm and

determine the rate of false positives and false negatives.

A. Collecting of Test Files

To create a good data set that will produce accurate
results, it is important to have a large number of both
legitimate and malicious files. The malicious files used in
this work were obtained from the VirusShare website by
contacting them. Legitimate files were downloaded from
various websites on the Internet (standard Windows
applications were also used).

http://woasjournals.com/index.php/ijitas

 Rkhouya et al.: Malware Detection Using a Machine-Learning Based Approach

http://woasjournals.com/index.php/ijitas

168

• The number of malicious files used in this
research is: 124987

• The number of legitimate files used in this
research is: 10400

It is important to be careful when working with
malicious files to avoid getting infected or causing a
malware outbreak.

B. Extracting features from files

The first step in supervised machine learning is to create
a dataset. The feature dataset is extracted from the
previously collected files. The features that are extracted
from the files are the PE headers. Before citing these
features, take a look at the format of a PE file [3]; the
following figure shows the general format of a PE file:

Figure 1. Format of a PE file

Machine learning uses integer or float data as

recognition functionalities [4], most of the parameters of

PE are already integer values (FieldSize, addresses,

entropy...). The parameters of PE were extracted using the

"pefile" library in Python. Upon extraction, relevant

features were considered [5], below is the final list of

extracted features:

AddressOfEntryPoint, BaseOfCode, BaseOfData,

Characteristics, checksum, DllCharacteristics, ExportNb,

FileAlignment, ImageBase, ImportsNb, ImportsNbDLL,

ImportsNbOrdinal, LoadConfigurationSize,

LoaderFlags,machine, MajorImageVersion,

MajorLinkerVersion, MajorOperatingSystemVersion,

MajorSubsystemVersion, md5, MinorImageVersion,

MinorLinkerVersion, MinorOperatingSystemVersion,

MinorSubsystemVersion, Name,

NumberOfRvaAndSizes, ResourcesMaxEntropy,

ResourcesMaxSize, ResourcesMeanEntropy,

ResourcesMeanSize, ResourcesMinEntropy,

ResourcesMinSize, ResourcesNb, SectionAlignment,

SectionMaxRawsize, SectionMaxVirtualsize,

SectionsMaxEntropy, SectionsMeanEntropy,

SectionsMeanRawsize, SectionsMeanVirtualsize,

SectionsMinEntropy, SectionsMinRawsize,

SectionsMinVirtualsize, SectionsNb, SizeOfCode,

SizeOfHeaders, SizeOfHeapCommit,

SizeOfHeapReserve, SizeOfImage,

SizeOfInitializedData, SizeOfOptionalHeader,

SizeOfStackCommit, SizeOfStackReserve,

SizeOfUninitializedData, Subsystem, VersionInformation

Size.

C. Selecting the Relevant features

The idea of relevant feature selection is to reduce the

54 extracted features to a smaller set of features that are

pertinent to distinguish legitimate files from malware files.

The step of selecting relevant features is done by checking

the difference between the values of features extracted

from malicious and legitimate files. To process the data,

Pandas [6], Scikit and Numpy libraries were used [7].

From the 54 features, 9 relevant features were selected

and sorted according to their importance using the Extra

Trees Classifier. The Trees classifier is based on an

extraction of observations from the dataset and an

extraction of attributes. For better interpretation, the

attributes selected at the top of the tree are usually more

important than the attributes selected at the end nodes of

the tree because, in general, the higher subdivisions lead to

greater information gain. The following figure (Figure 2)

shows the selected relevant attributes and their importance:

Figure 2. Relevant features and their importance

D. Classifying

 After selecting the relevant features, the next step is

classification; in this research, four algorithms were used:

0 0,1 0,2 0,3

 DllCharacteristics

Machine

MajorSubsystemVersion

Characteristics

 SectionsMaxEntropy

Subsystem

MajorOperatingSystem…

LoadConfigurationSize

ResourcesMeanEntropy

Importance

Importance

Int. J. Inf. Tec. App. Sci. 3, No.4, 167-171 (October-2021)

http://woasjournals.com/index.php/ijitas

169

Decision Tree [8], Gradient Boosting [9], SVM [10] and

Random Forest [8], as these algorithms require many

parameters; this experience was done with default

parameters. The dataset is split into two arrays: an array

named "X" that contains all values for each row except the

"legitimate" column, and an array named "y" that contains

only the "legitimate" value for that row. The classification

algorithms compare the attribute values of "X" with the

corresponding values of "y" to detect patterns in how

different attribute values tend to affect the legitimacy of a

file. Finally, the "X" and "y" arrays are split into two parts,

a training set and a test set. The training set is provided to

the classification algorithm to form a trained model. Once

the model is built, it is used to classify the test set to test

the accuracy of the model.

Before starting the training and testing, a timer

was set using the time library in Python to track the

execution time of each algorithm. The following flowchart

shows the idea used in classification:

Figure 3. Training and testing flowchart

E. Studying the Efficiency of Algorithms

As mentioned earlier, the performance of each

algorithm is measured by the following criteria: The

running time, the accuracy, the rates of false positives and

false negatives, and the AUC.

The accuracy of the model is determined by the score

function from the Scikit library in Python.

The rates of false positives and false negatives are

calculated using the confusion matrix [11]. Confusion

matrix, also called error matrix, is a table that shows

different predictions and test results and compares them

with the actual values. These matrices are used in statistics,

data mining, machine learning models and other artificial

intelligence applications.

TABLE I. THE GENERAL FORMAT OF THE

CONFUSION MATRIX

 Actually

Positive (1)

Actually

Negative (0)

Predicted Positive (1) TP FN
Predicted Negative (0) FP TN

TP stands for True Positives; TN stands for True

Negatives, FP stands for False Positives, while FN refers

to False Negatives. The scikit library also provides a

function that returns the confusion matrix. The values

used to measure efficiency are calculated as follows:

• False Positive rate (also called Fall out) is

proportion of the incorrectly positive classified

samples to all negative samples, it is calculated

using the equation (1):

𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁

(1)

• False Negative rate is the proportion of positives

which yield negative test outcomes with the test,

it is calculated using the equation (2):

𝐹𝑁𝑅 =

𝐹𝑁

𝐹𝑁 + 𝑇𝑃

(2)

• The accuracy (also called score) is the proportion

of the correctly classified samples to all samples,

it is described in the equation (3):

𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

(3)

In this experience, the running time is calculated

from the start of the training to the calculation of the

confusion matrix.

Area under ROC curve [12]: ROC curve is generally

used in binary classification; It is constructed by plotting

the TPR (True Positive Rate) on the Y-axis and the FRR

(False Positive Rate) on the X-axis. The performance of

each classifier is measured by the area under the ROC

curve, where 0.5 represents random prediction and 1

represents perfect prediction.

 Rkhouya et al.: Malware Detection Using a Machine-Learning Based Approach

http://woasjournals.com/index.php/ijitas

170

3. FINDINGS

A. Algorithms Performance

 The following table shows the results of the

performance criteria values for each of the tested

algorithms:

TABLE II. EXPRIMENT RESULTS

Algorithm Accuracy

(%)

Running

Time (in sec)

False

positive

Rate (%)

False

Negative

Rate (%)

Decision

Tree

99.449412 0.723649 0.208100 4.676953

Gradient

Boosting

99.323775 9.116513 0.188090 6.557377

Random

Forest

99.648954 11.185557 0.108052 3.278689

SVM 99.434632 3009.639216 0.168081 5.351977

B. Area Under Receiver Characteristic Operator

Curve

To get more insight on performance of all the
algorithms in detecting the malware files, area under the
ROC curve for all algorithms has been computed and
plotted. The results are shown in Table 3 and ROC curves
are presented in the Figure 4.

TABLE III. RESULTS OF AREA UNDER ROC

CURVE FOR EACH ALGORITHM

Algorithm AUC

Decision Tree 0.9896

Random Forest 0.9933

Gradient Boosting 0.9950

SVM 0.9910

Figure 4. ROC Curve

4. DISCUSSION

Although 54 features were used to detect malware files,
not all were equally important in distinguishing malware
files from legitimate files. Only 9 features proved to be
relevant. This can be explained by looking at the nature of
the malware binaries and the functionalities they are
programmed to perform. For example, DLLCharacteristics
is a relevant feature with an importance of over 0.25. This
PE header was found to be relevant in identifying malware.
Jinrong Bai (2014) interpreted this by explaining that most
types of malware are executable images, while most parts
of benign software are dynamic link libraries. therefore, the
mean values of characteristics, ImageBase, and
Dllcharacteristics show significant differences between
malware and benign software [13].

From the experimental results, it can be inferred that all
the algorithms used perform well in the accuracy
measurement and achieve above 99%. While the Random
Forest algorithm performed the best in terms of score and
false negative rate, the Decision Tree algorithm performed
the best in terms of execution time. On the other hand, the
execution time of the SVM algorithm is strikingly high
compared to the other algorithms, although the execution
time depends on the CPU and does not give much
indication of the performance in such experiments, but it
still gives an idea of the computational operations per
algorithm; the Gradient Boosting algorithm achieved a
high false negative rate but a low false positive rate.

Overall, Random Forest was found to be the best and
most accurate algorithm used in this research. These results
are in line with other research on the same topic, where the
9 PE headers were also found to be relevant for malware
classification. The only difference is in the importance of
each feature and the accuracy of the algorithms. In many
other studies, the algorithms did not achieve high accuracy
while in this study the accuracy is higher. This can be
explained by the fact that the dataset used in this study is
much larger (more than 130000 files), which makes this
study outstanding.

5. CONCLUSION

Malware attacks are becoming one of the biggest

threats to national information security, especially in these

pandemic times when cyber attacks are increasing

tremendously. Malware programmers are developing new

techniques every day to avoid detection. To counter these

attacks, information security professionals must use new

technologies to detect this malware.

In this paper, we presented a method to classify

malware using PE headers. More than 130000 files were

used to create the dataset for training four machine

learning algorithms. The efficiency of these algorithms

was studied in terms of accuracy, execution time and

UAC. Random Forest showed high performance

compared to the other 3 algorithms with accuracy above

99.64 percent and 0.9933 area under the ROC curve.

Int. J. Inf. Tec. App. Sci. 3, No.4, 167-171 (October-2021)

http://woasjournals.com/index.php/ijitas

171

From the experimental results on UAC, accuracy,

false positive rate, and false negative rate, it can be

concluded that the proposed method can successfully

detect malware with high accuracy.

REFERENCES

[1] Ashwini Mujumdar, Gayatri Masiwal, and Dr B Meshram.

“Analysis of signature-based and behavior-based anti-malware
approaches”. In: International Journal of Advanced Research in
Computer Engineering and Technology (IJARCET) 2.6 (2013), pp.
2037–2039.

[2] Matthew G Schultz et al. “Data mining methods for detection of
new malicious executables”. In: Proceedings 2001 IEEE
Symposium on Security and Privacy. S&P 2001. IEEE. 2000, pp.
38–49.

[3] Visual Studio. “Microsoft Portable Executable and Common
Object File Format Specification”. In: Saatavilla: https://download.
microsoft. com/download/9/c/5/9c5b2167-8017-4bae-9fde-
d599bac8184a/pecoff_v83. docx. Haettu 5 (2021).

[4] Ethem Alpaydin. Introduction to machine learning. MIT press,
2020.

[5] Zane Markel and Michael Bilzor. “Building a machine learning
classifier for malware detection”. In: 2014 second workshop on
anti-malware testing research (WATeR). IEEE. 2014, pp. 1–4.

[6] Fu Song and Tayssir Touili. “PoMMaDe: pushdown model-
checking for malware detection”. In: Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering. 2013, pp.
607–610.

[7] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”.
In: the Journal of machine Learning research 12 (2011), pp. 2825–
2830.

[8] J. Ross Quinlan. “Induction of decision trees”. In: Machine learning
1.1 (1986), pp. 81–106.

[9] Hassan Chouaib. “Sélection de caractéristiques: méthodes et
applications”. In: Paris Descartes University: Paris, France (2011).

[10] Olivier Bousquet. “Introduction au Support Vector Machines
(SVM)”. In: Center mathematics applied, polytechnique school of
Palaiseau (2001).

[11] Ronny Merkel et al. “Statistical detection of malicious pe-
executables for fast offline analysis”. In: IFIP International
Conference on Communications and Multimedia Security.
Springer. 2010, pp. 93–105.

[12] Kevin Markham. “ROC curves and Area Under the Curve
explained”. In: data school 19 (2014).

[13] Jinrong Bai, Junfeng Wang, and Guozhong Zou. “A malware
detection schemebased on mining format information”. In:The
Scientific World Journal2014 (2014).

