

International Journal of Information Technology and Applied Sciences

ISSN (2709-2208)

Int. J. Inf. Tec. App. Sci. 1, No.1 (October-2019)

 http://woasjournals.com/index.php/ijitas

1

https://doi.org/10.52502/ijitas.v1i1.6

Machine Learning confronted with the operational constraints

of detection systems

Sridarala Ramu

 Vardhaman College of Engineering, India

Abstract: Intrusion detection systems, traditionally based on signatures, have not escaped the recent appeal of machine learning

techniques. While the results presented in academic research articles are often excellent, security experts still have many reservations

about the use of Machine Learning in intrusion detection systems. They generally fear an inadequacy of these techniques to operational

constraints, in particular because of a high level of expertise required, or a large number of false positives.

In this article, we show that Machine Learning can be compatible with the operational constraints of detection systems. We explain

how to build a detection model and present good practices to validate it before it goes into production. The methodology is illustrated

by a case study on the detection of malicious PDF files and we offer a free tool, SecuML, to implement it.

Keywords: Machine Learning, detection systems.

1. INTRODUCTION

Intrusion detection systems are traditionally based on
signatures generated manually by security experts.
However, Big Data, artificial intelligence, Machine
Learning (automatic learning in French) or Deep Learning
(deep learning in French) are often presented as
technologies that can revolutionize intrusion detection
systems [18, 23]. Indeed, these methods induce detection
rules automatically from data, and their generalization
capabilities allow them to detect malicious events that are
still unknown. Many research papers on the application of
machine learning to intrusion detection have been
published and often show exceptional results (detection of
malicious PDFs [6, 12, 20, 21], of malicious executable
files [11], or botnets [2, 3]). However, from an operational
point of view, there are still many reservations about the
use of machine learning in production:

- A detection system based on learning methods
automatic can it process in real time?

- Is the false positive rate of machine learning
methods, often presumed to be too high, acceptable
for them to be put into production?

- Machine learning is not the core business of a
security expert, yet it is on him that the
implementation of a detection system rests. How

can he trust these methods to put them into
production?

- Are the alerts generated by such a detection system
sufficiently interpretable to allow their exploitation
in production?

In this paper, we answer the questions mentioned above

by providing solutions so that machine learning methods

are not incompatible with operational constraints, and that

they can thus be integrated into detection systems in

addition to other methods. , like the signatures. First, we

briefly present the problem of intrusion detection and give

a general overview of machine learning in this context (see

section 2). Then, we present a case study: the detection of

malicious PDF files (see section 3). This example will then

be used to illustrate good practices for learning and

validating a detection model, and to highlight pitfalls

sometimes omitted in academic publications (see sections

4 and 5). Finally, we present the free SecuML tool (cf.

section 6) allowing in particular to build a detection model

and to validate it upstream of its production with the good

practices exposed in the paper.

2. INTRUSION DETECTION AND MACHINE LEARNING

The role of an intrusion detection system is to detect
malicious events through the network and system activities
that it analyzes. A suspicious event can be the recovery of

Sridarala Ramu: Machine Learning confronted with the operational constraints of detection systems

http://woasjournals.com/index.php/ijitas

2

a malicious file attached to an email or the visit to a corrupt
website for example.

The detection system administrator is notably
responsible for setting up detection methods, and for
developing them over time. The security operator analyzes
and qualifies the alerts in order to allow the necessary
measures to be taken to deal with any possible security
incidents. This work can be costly.

Intrusion detection systems are traditionally based on
signatures: detection rules constructed by an expert
following an in-depth analysis of malicious events. This
approach is effective against threats that have already been
observed and for which a signature has been generated, but
it is often ineffective in detecting new threats. In addition,
simple variations of the threat, such as polymorphism [5],
may be enough to render the signature ineffective.
Signatures are ubiquitous in current detection systems, but
detection methods with machine learning are considered in
addition to better detect new threats. In this section, we
present the two main categories of machine learning
methods that can complement the signature approach:
anomaly detection and supervised learning.

A. Anomaly detection

Anomaly detection is the first machine learning method
that has been applied to intrusion detection [7]. This
approach only requires non-malicious data to build the
detection model. The model will then generate an alert as
soon as an event differs too much from the normal behavior
induced by the benign data initially provided.

Anomaly detection methods are very attractive because
they allow the detection of unknown threats. They have no
preconceptions about what is a malicious event and are
therefore prone to detect new threats. In addition, putting
them into production is often presented as very simple: all
you need is a benign dataset devoid of malicious activity.
Obtaining such a dataset is not easy in practice, however,
as there is no simple way to ensure that there is no
malicious activity. If the supposedly healthy dataset
contains malicious activity, this can distort the learning of
the model and prevent the detection of certain threats.
These detection systems are simple in principle, but rarely
in practice, and putting them into production can be very
complex. In addition, anomaly detection methods raise
alerts for abnormal events that are not necessarily
malicious. For example, an abnormal transmission /
reception ratio on HTTPS can be a sign of data exfiltration,
but can also be caused by the use of certain social networks;
popular websites can be the source of seemingly
abnormally large data traffic without being malicious; and
simple configuration errors can also lead to behaviors
triggering false alerts. Thus, these detection methods often
suffer from a high rate of false positives. Finally, the
detection of anomalies offers few possibilities for taking
into account expert knowledge. Indeed, experts cannot

guide these models by providing examples of malicious
events as they only take into account mild events.

B. Supervised learning

Supervised learning responds to this need to integrate
expert knowledge. Indeed, a supervised detection model is
constructed from labeled data provided by the expert: mild
events, but also malicious events to guide the detection
model. The learning algorithm will automatically look for
the points allowing to characterize each of the classes or to
discriminate them to build the detection model. Once the
detection model is learned on a training dataset, it can be
applied automatically to detect malicious events. Thanks to
supervised learning, the security operator supervising the
detection system can easily participate in improving the
detection model based on the alerts that he analyzes.
Indeed, false alerts can be reinjected to correct the detection
model and thus avoid generating the same false alerts in the
future. The real alerts can also be fed back into the model
to let it follow the evolution of the threat. Thus, security
experts do not give control of the detection system to an
automatic model, but they actively supervise it to improve
its performance over time [16].

Finally, supervised learning is guided by malicious
examples provided by the expert, which reduces the rate of
false positives compared to the detection of anomalies.
Supervised methods are therefore to be preferred when
labeled data are available to train the detection model.
However, these methods must be applied taking into
account the operational constraints of the detection
systems. The detection model must be able to process data
in real time, and the false positive rate must remain below
a certain threshold to prevent the security operator from
being overwhelmed by false alerts. Finally, the
administrator must have confidence in the model to put it
into production, and the operator must be able to
understand the alerts generated. In the rest of the paper, we
give a methodology so that machine learning meets these
constraints, and so that it can be integrated into detection
systems to better detect new threats.

3. CASE STUDY: DETECTING MALICIOUS PDF FILES

In this section, we present the problem of detecting
malicious PDF files based on machine learning. The rest of
the article will use this case study to illustrate good
practices and highlight the pitfalls to avoid when using
machine learning to build a detection model.

A. Problem

The PDF format is an open document description
format, created by the Adobe company in 1993, aimed at
preserving the formatting regardless of the reading
software or the operating system used. Among other things,
it consists of a number of metadata such as the author, the
date of production, as well as objects of different types
referenced in a table called Xref. These objects can be in
particular text, images, video or even JavaScript code. Its

Int. J. Inf. Tec. App. Sci. 1, No.1, 1-7 (October-2019)

http://woasjournals.com/index.php/ijitas

3

richness and the availability of readers on different
platforms make it a format widely used in most
organizations for creating and exchanging electronic
documents. On the other hand, the volume of associated
specifications (more than 1,300 pages available publicly)
implies significant software complexity, amplified by
dependencies with numerous third-party libraries. Also,
this software is often subject to vulnerabilities, which make
PDF format even more attractive to attackers.

In the majority of cases, malicious PDF files are forged
by the attacker to exploit a vulnerability, in order to execute
code and compromise the victim's machine (for example
JavaScript code exploiting a vulnerability of the JavaScript
engine included in the reader, or a TTF font exploiting an
OS vulnerability). Among the elements that we can try to
locate to detect malicious PDF files, we can note:

the presence of a malicious charge (a shellcode, etc.);

- Functions to deceive detection (obfuscation by
encryption, multiple encodings, concealment of
objects, etc.).

- The more or less realistic nature of the files
(malformations, low number of pages and / or
objects, etc.).

Supervised learning is preferred in the context of
intrusion detection systems (see section 2), and it is easy to
obtain benign and malicious PDF files using Contagio3,
VirusTotal4, or the Google search for example. So, we
chose supervised learning to build a model for detecting
malicious PDF files. The following section outlines the
main steps in the use of supervised learning and describes
the performance estimators for properly evaluating a
detection model.

B. Supervised learning

Figure 1. Binary classifier for intrusion detection.

Two phases: learning and prediction Supervised
learning can be used for intrusion detection via a binary
classifier (see Figure 1). The classifier takes as input an

instance, a PDF file for example, and returns as output the
predicted label, benign or malicious (in green and red in the
figure). This classifier can also be called a detection model
in the context of intrusion detection.

Supervised learning has two main stages:

- Learning the classifier from labeled data.

- Use of the classifier to detect malicious
instances.

4. APPROACH AND METHODOLOGY

Once the classifier is trained from the training data, it
can be used to predict the label of a PDF file. In practice,
most classifiers do not simply predict a binary value
(benign vs. malicious), but rather a probability of
maliciousness (see Figure 3). An alert is then generated
only if the probability of malicious attack is greater than the
detection threshold set by the administrator of the detection
system. In the example in Figure 3, an alert will be raised
for the PDF file considered only if the detection threshold
is less than 75%. The probability of malicious acts
predicted by the detection model makes it possible to
classify the alerts according to the trust of the model, and
therefore to define the priority of the alerts that the operator
supervising the detection system must deal with.
Performance estimators A detection model is not perfect; it
can make prediction errors. It is essential to validate it, that
is to say to measure the relevance of the alerts generated,
before putting it into production.

The best-known performance estimator is the
classification error rate which is equal to the percentage of
poorly classified instances. However, in the case of
intrusion detection, the data is generally very asymmetrical
(with a small proportion of malicious instances), and the
error rate is not able to correctly estimate the performance
of a classifier. in this situation. Here is an example showing
the limits of the classification error rate. We consider 100
instances: 2 malicious and 98 benign. In this situation, a
foolish detection model that always predicts benign will
have a classification error rate of only 2% when it is not
able to detect the slightest malicious instance.

In order to correctly analyze the performance of a
detection model, the first step consists in writing the
confusion matrix which takes into account the two types of
possible errors: false positives, i.e. false alerts lifted for
benign instances, and false negatives, that is, undetected
malicious instances. Figure 2 explains the content of a
confusion matrix.

A detection model must be evaluated with these two
performance estimators taken together. Indeed, the rate of
false positives must be low so that the security operator
supervising the detection system is not overwhelmed by
false alerts. The detection rate must be high to avoid too
many threats remaining undetected. The detection
threshold determines the sensitivity of the detection:
lowering this threshold increases the detection rate, but also

Sridarala Ramu: Machine Learning confronted with the operational constraints of detection systems

http://woasjournals.com/index.php/ijitas

4

the rate of false alerts. It is therefore set by the detection
system administrator according to the desired compromise
between detection rate and false positive rate. The
performance estimators that we have just presented depend
on the value of the detection threshold. Another
performance estimator, which has the advantage of being
independent of this threshold, is often used in detection: the
receiver efficiency function, more frequently referred to as
the ROC5 curve [9]. This curve represents the detection
rate as a function of the false positive rate for various
detection thresholds (see Figure 5). For a threshold of
100%, the detection and false alarm rates are zero, and for
a threshold of 0% they are both at 100%. A detection model
is all the more efficient as its curve is close to the upper left
corner: a high detection rate for a low rate of false alerts.
The area under the ROC curve, called AUC6, is often
calculated to estimate the performance of a detection model
independently of the detection threshold, and its value must
be close to 1.

A classifier randomly predicting the probability of
malicious attack a for ROC curve the red line represented
in figure 2. Thus, the ROC curve of a classifier must always
be above this line (otherwise a random classifier has better
performance ...), and the AUC is at a minimum 0.5. The
ROC curve is not only a performance estimator, but it also
allows the detection system administrator to choose the
detection threshold value according to the desired detection
rate or the tolerated false alarm rate.

Generic method Our presentation of supervised
learning was based on the example of the detection of
malicious PDF files, but the instance can also represent a
DOC file, traffic associated with an IP address or a web
page for example. Machine learning algorithms do not take
raw instances as input, but a representation in the form of
vectors of digital attributes7 of fixed size. Thanks to this
representation of instances, machine learning algorithms
are generic and can be easily applied to various intrusion
detection problems.

The attribute extraction step is specific to each
detection problem. In the following section, we present the
main steps that must be taken to create a supervised
detection model by illustrating our remarks with the case of
the detection of malicious PDF files.

5. HOW TO BUILD A DETECTION MODEL?

The first step before building a detection model with
machine learning is to define the target, i.e. what you want
to detect. This preliminary step was done for the problem
of detecting malicious PDF files.

Then, to create a detection model, you must:

- collect learning data containing benign and
malicious instances corresponding to the
target.

- define the attributes to extract to represent the
instances in the form of digital vectors.

Figure 2. Explanation of the ROC curve.

choose a type of classification model adapted to
operational constraints. We now describe these three steps
with generic tips and examples from the PDF file case
study.

A. Obtain learning data

Building a supervised detection model requires
learning data for which the labels, benign or malicious, are
known. This training data must contain benign and
malicious instances corresponding to the detection target.
However, obtaining learning data is often expensive,
because associating a label with instances requires the
knowledge of a security expert. There are publicly labeled
data sets for certain detection problems (Malicia project,
KDD99, kyoto2006, or Contagio for example), but for
other problems, a data annotation phase must precede the
construction of the model. This step can be tedious, but the
effectiveness of the model will be directly linked to the
composition of the learning game, this is why this step
should not be overlooked. There are a few main principles
to follow when building the learning game. First, it must
have a sufficient number of instances for the detection
model to be able to properly generalize benign and
malicious behavior. Typically, it seems very difficult to
learn a model if the training data contains less than a few
hundred instances for each label. Furthermore, care must
be taken not to have an overly unbalanced training data set
with a label representing a very small proportion of the
data. It is impossible to define general rules concerning the
minimum number of instances necessary to learn a model,
or the acceptable degree of imbalance, because these values
depend on the detection problem considered and, on the
instances, constituting the learning game.

Int. J. Inf. Tec. App. Sci. 1, No.1, 1-7 (October-2019)

http://woasjournals.com/index.php/ijitas

5

In the case of detection of malicious PDF files, it is easy
to obtain a labeled data set, since this type of file is popular
and frequently used to propagate malicious code. The
experiences presented in this paper are based on two data
sets: Contagio (9,000 benign files and 11,101 malicious)
and webPdf (2,078 benign files and 767 malicious).
Contagio is a public dataset used in many academic works,
and we built webPdf from benign files from the Google
search engine and from malicious files obtained on the
VirusTotal platform.

B. Extracting discriminating attributes

This step consists in processing the data in order to
represent it in the form of vectors of digital attributes of
fixed size usable by the learning algorithms. Attributes are
digital characteristics extracted from the data that will
allow the decision making of the classifier: the more they
are discriminating for decision making, the more efficient
the classifier will be. It is therefore necessary to have a
good knowledge of the format and content of the data
considered, and to have well defined the detection target to
extract discriminating attributes. The attribute extraction
phase is specific to each detection problem, but common
techniques for extracting digital attributes can often be
applied. We present some classic methods of extracting
attributes, giving examples with the case of PDF files.

PDF files contain two types of information that can be
used to generate attributes: metadata (author or date of
creation, for example), and a list of its objects. Some
information is already digital, or a simple transformation
can make it digital. For example, the file size is numeric,
and the creation and modification dates can be transformed
into timestamps. However, other information, such as the
author or objects, is not numeric, and therefore cannot be
directly exploited by machine learning algorithms. In
addition, each PDF file has a variable number of objects:
how to represent this information in the form of a vector of
fixed size?

Character strings Discriminating information can take
the form of character strings. The extraction method that
we used consists in transforming a character string into a
vector of attributes where each attribute corresponds to a
family of characters (capital letters, small letters, or
numbers for example). The value of an attribute is
determined by the number of occurrences, or the
proportion, of this family in the character string.

The author of a PDF file is a character string that we
have transformed into 7 numeric attributes: size of the
string, number of lowercase letters, capital letters, numbers
For the detection of malicious PDF files, we have extracted
120 digital attributes, similar to those presented in the work
of Smutz and Stavrou [19, 20], which we can group into
three categories:

- File metadata (for example the author, or the
date of creation);

- File structure (for example the number of
objects, or the average size of the objects);

- Objects and keywords used in the file (for
example the types of objects, or the number of
image objects).

4.3 Selection of the type of classification model

All the intelligence of supervised learning lies in
optimizing the parameters of the classification model from
the training data for which the labels are known. This
optimization phases is theoretically complex, but the great
popularity of machine learning has gradually simplified its
use with the emergence of many dedicated libraries (scikit-
learn in python, Spark, Mahout or Weka in java, or Vowpal
Wabbit in C ++ for example), and solutions

online like Google Cloud ML, Microsoft Azure or
Amazon Machine Learning. This makes it easy to learn
various classification models from learning data. Neural
networks are so popular [8], especially thanks to their
extraordinary results in computer vision, that the
amalgamation between deep learning and machine learning
is often made. Neural networks are only one type of
classification model, and there are many others: decision
trees, random forests (or Random Forests), k nearest
neighbors, discriminating linear or quadratic analyzes,
regressions logistics, support vector machines (or SVM for
Support Vector Machine) or naive Bayesian classification
to name a few. It is therefore necessary to choose a type of
classification model suited to the detection problem
considered and meeting the operational constraints of the
detection systems mentioned in section 2. Linear
classification models, such as logistic regression or support
vector machines, are adapted to intrusion detection and we
now detail how they respond to operational constraints.
Fast predictions Most classification models have a learning
phase which is very costly in computation time and which
is carried out line but applying the model to new data is
usually extremely fast. This is the case of linear
classification models whose application is in O (d) where d
is the number of attributes describing each instance. On the
other hand, certain models, described as lazy, are to be
avoided for intrusion detection. Indeed, they do not have a
learning phase, and the entire learning data is therefore
considered during the prediction phase. For example, the k
nearest neighbors is a lazy model not suitable for intrusion
detection. To predict the label of a new instance, you have
to look for its k closest neighbors among all the training
data, and then the predicted label is the one most
represented. The predictions of this classification model
have a time complexity in O (nd) which depends on the
number of attributes d, but also on the number of training
data n. However, in machine learning, it is desirable that n
be large, and n increase over time when new instances are
reinjected into the model following the analysis of the alerts
generated. The prediction time of this classification model
is far too long to be used in a detection system.

Sridarala Ramu: Machine Learning confronted with the operational constraints of detection systems

http://woasjournals.com/index.php/ijitas

6

Periodic updating of the model When a detection
system is in production, the security operator ensures its
supervision by analyzing the alerts generated. Their
primary purpose is to identify false alarms, but also to take
the necessary action in the event of a security incident.
However, their analyzes, both false and true positive, can
be incorporated into the detection model to improve its
detection capabilities. It is therefore essential that the
model can be updated periodically without reconsidering
the entirety of the training data used previously. Linear
models perfectly meet this constraint. They can be learned
in batch mode initially but can also be updated
incrementally by taking into account only the new labeled
data.

Interpretable model Linear models have the great
advantage of being interpretable. Thus, the administrator of
the detection system can interpret the detection model, that
is to say understand how he makes his decisions, before
putting it into production in order to check its consistency.
Then, the operator supervising the detection system can
know the main causes responsible for generating an alert.

6. VALIDATION ON LEARNING DATA

We would like to point out that the performance of the
detection model on its learning data is not a good
evaluation of the model. Indeed, the goal of a detection
model is not to correctly classify training data, but to be
able to generalize, that is to say, to correctly classify data
not used during its learning phase. However, analyzing the
performance of the model on the training data can help
detect the problem of under-learning. It is said that there is
under-learning when the detection model has learned
almost nothing from the training data. In this situation, the
detection model behaves almost like a random generator.
To diagnose under-learning, simply draw the ROC curve
obtained on the training data and check that it is not too
close to that of a random generator (cf. random curve in
Figure 5). The expert has two options to resolve the under-
learning: add discriminating attributes or use a more
complex type of classification model. When a model fails
to discriminate between malicious and benign instances on
learning data, it is often that the expert has not given good
attributes as input. It is therefore necessary for it to resume
the attribute extraction phase to add more discriminating
characteristics. Sometimes the expert provided
discriminating attributes, but the type of classification
model chosen is not complex enough to discriminate
against malicious instances of benign. Figure 6 (a) shows a
two-dimensional dataset where a linear model is not
complex enough to properly separate malicious instances
from benign, whereas a quadratic model, slightly

more complex, is perfectly suited (see Figure 6 (b)).
However, using an extremely complex detection model is
not a solution, because in this case we risk over learning. It
is said that over-learning occurs when the classification
model perfectly predicts the label of learning data but is
unable to correctly predict the label of new data. The over-

learning problem can be diagnosed by analyzing the
performance of the model on an independent validation set
and is therefore presented in the following section.

Figure 3. Illustration of over-learning. The top line represents the
training data, and the bottom line represents the validation data. The

data with a cross correspond to classification errors.

7. CONCLUSION

In this article, we have described a methodology for
solving the “black box” aspect often criticized by machine
learning methods, and we illustrated it with a case study on
the detection of malicious PDF files. Thanks to this
methodology, it becomes possible to adapt machine
learning to the reluctance of security experts, and to the
constraints of intrusion detection systems.

In particular, the article emphasizes the importance of
the rigor of the model validation method before it goes into
production. In fact, errors during the validation phase can
overestimate the efficiency of a model, and therefore lead
to unpleasant surprises during production. The validation
methodology that we propose makes it possible to
anticipate problems inherent in machine learning, and
therefore to avoid additional costs linked to tests in
production.

REFERENCES

[1] Saleema Amershi, Max Chickering, Steven M Drucker, Bongshin

Lee, Patrice Simard, and Jina Suh. Modeltracker : Redesigning
performance analysis tools for machine learning. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in
Computing Systems, pages 337–346. ACM, 2015.

[2] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos
Vasiloglou, Saeed Abu-Nimeh, Wenke Lee, and David Dagon.
From throw-away traffic to bots : detecting the rise of DGA-based
malware. In USENIX Security, pages 491–506, 2012.

[3] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda,
and Christopher Kruegel. Disclosure : detecting botnet command

Int. J. Inf. Tec. App. Sci. 1, No.1, 1-7 (October-2019)

http://woasjournals.com/index.php/ijitas

7

and control servers through large-scale netflow analysis. In
ACSAC, pages 129–138, 2012.

[4] Dong Chen, Rachel KE Bellamy, Peter K Malkin, and Thomas
Erickson. Diagnostic visualization for non-expert machine learning
practitioners : A design study. In Visual Languages and Human-
Centric Computing (VL/HCC), 2016 IEEE Symposium on, pages
87–95. IEEE, 2016.

[5] Mihai Christodorescu and Somesh Jha. Testing malware detectors.
ACM SIGSOFT Software Engineering Notes, 29(4) :34–44, 2004.

[6] Igino Corona, Davide Maiorca, Davide Ariu, and Giorgio
Giacinto. Lux0r : Detection of malicious pdf-embedded javascript
code through discriminant analysis of api references. In AISEC,
pages 47–57, 2014.

[7] Dorothy E Denning. An intrusion-detection model. IEEE
Transactions on software engineering, (2) :222–232, 1987.

[8] Erraissi, Allae, Banane Mouad, and Abdessamad Belangour. "A
Big Data visualization layer meta-model proposition." In 2019 8th
International Conference on Modeling Simulation and Applied
Optimization (ICMSAO), pp. 1-5. IEEE, 2019.

[9] Banane, Mouad, Allae Erraissi, and Abdessamad Belangour.
"SPARQL2Hive: An approach to processing SPARQL queries on
Hive based on meta-models." In 2019 8th International Conference
on Modeling Simulation and Applied Optimization (ICMSAO), pp.
1-5. IEEE, 2019.

