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Abstract: Intrusion detection systems, traditionally based on signatures, have not escaped the recent appeal of machine learning 

techniques. While the results presented in academic research articles are often excellent, security experts still have many reservations 

about the use of Machine Learning in intrusion detection systems. They generally fear an inadequacy of these techniques to operational 

constraints, in particular because of a high level of expertise required, or a large number of false positives. 

In this article, we show that Machine Learning can be compatible with the operational constraints of detection systems. We explain 

how to build a detection model and present good practices to validate it before it goes into production. The methodology is illustrated 

by a case study on the detection of malicious PDF files and we offer a free tool, SecuML, to implement it. 
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1. INTRODUCTION  

Intrusion detection systems are traditionally based on 
signatures generated manually by security experts. 
However, Big Data, artificial intelligence, Machine 
Learning (automatic learning in French) or Deep Learning 
(deep learning in French) are often presented as 
technologies that can revolutionize intrusion detection 
systems [18, 23]. Indeed, these methods induce detection 
rules automatically from data, and their generalization 
capabilities allow them to detect malicious events that are 
still unknown. Many research papers on the application of 
machine learning to intrusion detection have been 
published and often show exceptional results (detection of 
malicious PDFs [6, 12, 20, 21], of malicious executable 
files [11 ], or botnets [2, 3]). However, from an operational 
point of view, there are still many reservations about the 
use of machine learning in production: 

- A detection system based on learning methods 
automatic can it process in real time? 

- Is the false positive rate of machine learning 
methods, often presumed to be too high, acceptable 
for them to be put into production? 

- Machine learning is not the core business of a 
security expert, yet it is on him that the 
implementation of a detection system rests. How 

can he trust these methods to put them into 
production? 

- Are the alerts generated by such a detection system 
sufficiently interpretable to allow their exploitation 
in production? 

In this paper, we answer the questions mentioned above 

by providing solutions so that machine learning methods 

are not incompatible with operational constraints, and that 

they can thus be integrated into detection systems in 

addition to other methods. , like the signatures. First, we 

briefly present the problem of intrusion detection and give 

a general overview of machine learning in this context (see 

section 2). Then, we present a case study: the detection of 

malicious PDF files (see section 3). This example will then 

be used to illustrate good practices for learning and 

validating a detection model, and to highlight pitfalls 

sometimes omitted in academic publications (see sections 

4 and 5). Finally, we present the free SecuML tool (cf. 

section 6) allowing in particular to build a detection model 

and to validate it upstream of its production with the good 

practices exposed in the paper. 

2. INTRUSION DETECTION AND MACHINE LEARNING 

The role of an intrusion detection system is to detect 
malicious events through the network and system activities 
that it analyzes. A suspicious event can be the recovery of 
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a malicious file attached to an email or the visit to a corrupt 
website for example. 

The detection system administrator is notably 
responsible for setting up detection methods, and for 
developing them over time. The security operator analyzes 
and qualifies the alerts in order to allow the necessary 
measures to be taken to deal with any possible security 
incidents. This work can be costly. 

Intrusion detection systems are traditionally based on 
signatures: detection rules constructed by an expert 
following an in-depth analysis of malicious events. This 
approach is effective against threats that have already been 
observed and for which a signature has been generated, but 
it is often ineffective in detecting new threats. In addition, 
simple variations of the threat, such as polymorphism [5], 
may be enough to render the signature ineffective. 
Signatures are ubiquitous in current detection systems, but 
detection methods with machine learning are considered in 
addition to better detect new threats. In this section, we 
present the two main categories of machine learning 
methods that can complement the signature approach: 
anomaly detection and supervised learning. 

A. Anomaly detection 

Anomaly detection is the first machine learning method 
that has been applied to intrusion detection [7]. This 
approach only requires non-malicious data to build the 
detection model. The model will then generate an alert as 
soon as an event differs too much from the normal behavior 
induced by the benign data initially provided. 

Anomaly detection methods are very attractive because 
they allow the detection of unknown threats. They have no 
preconceptions about what is a malicious event and are 
therefore prone to detect new threats. In addition, putting 
them into production is often presented as very simple: all 
you need is a benign dataset devoid of malicious activity. 
Obtaining such a dataset is not easy in practice, however, 
as there is no simple way to ensure that there is no 
malicious activity. If the supposedly healthy dataset 
contains malicious activity, this can distort the learning of 
the model and prevent the detection of certain threats. 
These detection systems are simple in principle, but rarely 
in practice, and putting them into production can be very 
complex. In addition, anomaly detection methods raise 
alerts for abnormal events that are not necessarily 
malicious. For example, an abnormal transmission / 
reception ratio on HTTPS can be a sign of data exfiltration, 
but can also be caused by the use of certain social networks; 
popular websites can be the source of seemingly 
abnormally large data traffic without being malicious; and 
simple configuration errors can also lead to behaviors 
triggering false alerts. Thus, these detection methods often 
suffer from a high rate of false positives. Finally, the 
detection of anomalies offers few possibilities for taking 
into account expert knowledge. Indeed, experts cannot 

guide these models by providing examples of malicious 
events as they only take into account mild events. 

B. Supervised learning 

Supervised learning responds to this need to integrate 
expert knowledge. Indeed, a supervised detection model is 
constructed from labeled data provided by the expert: mild 
events, but also malicious events to guide the detection 
model. The learning algorithm will automatically look for 
the points allowing to characterize each of the classes or to 
discriminate them to build the detection model. Once the 
detection model is learned on a training dataset, it can be 
applied automatically to detect malicious events. Thanks to 
supervised learning, the security operator supervising the 
detection system can easily participate in improving the 
detection model based on the alerts that he analyzes. 
Indeed, false alerts can be reinjected to correct the detection 
model and thus avoid generating the same false alerts in the 
future. The real alerts can also be fed back into the model 
to let it follow the evolution of the threat. Thus, security 
experts do not give control of the detection system to an 
automatic model, but they actively supervise it to improve 
its performance over time [16]. 

Finally, supervised learning is guided by malicious 
examples provided by the expert, which reduces the rate of 
false positives compared to the detection of anomalies. 
Supervised methods are therefore to be preferred when 
labeled data are available to train the detection model. 
However, these methods must be applied taking into 
account the operational constraints of the detection 
systems. The detection model must be able to process data 
in real time, and the false positive rate must remain below 
a certain threshold to prevent the security operator from 
being overwhelmed by false alerts. Finally, the 
administrator must have confidence in the model to put it 
into production, and the operator must be able to 
understand the alerts generated. In the rest of the paper, we 
give a methodology so that machine learning meets these 
constraints, and so that it can be integrated into detection 
systems to better detect new threats. 

3.  CASE STUDY: DETECTING MALICIOUS PDF FILES 

In this section, we present the problem of detecting 
malicious PDF files based on machine learning. The rest of 
the article will use this case study to illustrate good 
practices and highlight the pitfalls to avoid when using 
machine learning to build a detection model. 

A. Problem  

The PDF format is an open document description 
format, created by the Adobe company in 1993, aimed at 
preserving the formatting regardless of the reading 
software or the operating system used. Among other things, 
it consists of a number of metadata such as the author, the 
date of production, as well as objects of different types 
referenced in a table called Xref. These objects can be in 
particular text, images, video or even JavaScript code. Its 
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richness and the availability of readers on different 
platforms make it a format widely used in most 
organizations for creating and exchanging electronic 
documents. On the other hand, the volume of associated 
specifications (more than 1,300 pages available publicly) 
implies significant software complexity, amplified by 
dependencies with numerous third-party libraries. Also, 
this software is often subject to vulnerabilities, which make 
PDF format even more attractive to attackers. 

In the majority of cases, malicious PDF files are forged 
by the attacker to exploit a vulnerability, in order to execute 
code and compromise the victim's machine (for example 
JavaScript code exploiting a vulnerability of the JavaScript 
engine included in the reader, or a TTF font exploiting an 
OS vulnerability). Among the elements that we can try to 
locate to detect malicious PDF files, we can note: 

the presence of a malicious charge (a shellcode, etc.); 

- Functions to deceive detection (obfuscation by 
encryption, multiple encodings, concealment of 
objects, etc.). 

- The more or less realistic nature of the files 
(malformations, low number of pages and / or 
objects, etc.). 

Supervised learning is preferred in the context of 
intrusion detection systems (see section 2), and it is easy to 
obtain benign and malicious PDF files using Contagio3, 
VirusTotal4, or the Google search for example. So, we 
chose supervised learning to build a model for detecting 
malicious PDF files. The following section outlines the 
main steps in the use of supervised learning and describes 
the performance estimators for properly evaluating a 
detection model. 

B. Supervised learning 

 

Figure 1.  Binary classifier for intrusion detection. 

Two phases: learning and prediction Supervised 
learning can be used for intrusion detection via a binary 
classifier (see Figure 1). The classifier takes as input an 

instance, a PDF file for example, and returns as output the 
predicted label, benign or malicious (in green and red in the 
figure). This classifier can also be called a detection model 
in the context of intrusion detection. 

Supervised learning has two main stages: 

- Learning the classifier from labeled data. 

- Use of the classifier to detect malicious 
instances. 

4. APPROACH AND METHODOLOGY 

Once the classifier is trained from the training data, it 
can be used to predict the label of a PDF file. In practice, 
most classifiers do not simply predict a binary value 
(benign vs. malicious), but rather a probability of 
maliciousness (see Figure 3). An alert is then generated 
only if the probability of malicious attack is greater than the 
detection threshold set by the administrator of the detection 
system. In the example in Figure 3, an alert will be raised 
for the PDF file considered only if the detection threshold 
is less than 75%. The probability of malicious acts 
predicted by the detection model makes it possible to 
classify the alerts according to the trust of the model, and 
therefore to define the priority of the alerts that the operator 
supervising the detection system must deal with. 
Performance estimators A detection model is not perfect; it 
can make prediction errors. It is essential to validate it, that 
is to say to measure the relevance of the alerts generated, 
before putting it into production. 

The best-known performance estimator is the 
classification error rate which is equal to the percentage of 
poorly classified instances. However, in the case of 
intrusion detection, the data is generally very asymmetrical 
(with a small proportion of malicious instances), and the 
error rate is not able to correctly estimate the performance 
of a classifier. in this situation. Here is an example showing 
the limits of the classification error rate. We consider 100 
instances: 2 malicious and 98 benign. In this situation, a 
foolish detection model that always predicts benign will 
have a classification error rate of only 2% when it is not 
able to detect the slightest malicious instance.  

In order to correctly analyze the performance of a 
detection model, the first step consists in writing the 
confusion matrix which takes into account the two types of 
possible errors: false positives, i.e. false alerts lifted for 
benign instances, and false negatives, that is, undetected 
malicious instances. Figure 2 explains the content of a 
confusion matrix. 

A detection model must be evaluated with these two 
performance estimators taken together. Indeed, the rate of 
false positives must be low so that the security operator 
supervising the detection system is not overwhelmed by 
false alerts. The detection rate must be high to avoid too 
many threats remaining undetected. The detection 
threshold determines the sensitivity of the detection: 
lowering this threshold increases the detection rate, but also 



Sridarala Ramu: Machine Learning confronted with the operational constraints of detection systems 

 
http://woasjournals.com/index.php/ijitas 

 

4 

the rate of false alerts. It is therefore set by the detection 
system administrator according to the desired compromise 
between detection rate and false positive rate. The 
performance estimators that we have just presented depend 
on the value of the detection threshold. Another 
performance estimator, which has the advantage of being 
independent of this threshold, is often used in detection: the 
receiver efficiency function, more frequently referred to as 
the ROC5 curve [9]. This curve represents the detection 
rate as a function of the false positive rate for various 
detection thresholds (see Figure 5). For a threshold of 
100%, the detection and false alarm rates are zero, and for 
a threshold of 0% they are both at 100%. A detection model 
is all the more efficient as its curve is close to the upper left 
corner: a high detection rate for a low rate of false alerts. 
The area under the ROC curve, called AUC6, is often 
calculated to estimate the performance of a detection model 
independently of the detection threshold, and its value must 
be close to 1.  

A classifier randomly predicting the probability of 
malicious attack a for ROC curve the red line represented 
in figure 2. Thus, the ROC curve of a classifier must always 
be above this line (otherwise a random classifier has better 
performance ...), and the AUC is at a minimum 0.5. The 
ROC curve is not only a performance estimator, but it also 
allows the detection system administrator to choose the 
detection threshold value according to the desired detection 
rate or the tolerated false alarm rate.  

Generic method Our presentation of supervised 
learning was based on the example of the detection of 
malicious PDF files, but the instance can also represent a 
DOC file, traffic associated with an IP address or a web 
page for example. Machine learning algorithms do not take 
raw instances as input, but a representation in the form of 
vectors of digital attributes7 of fixed size. Thanks to this 
representation of instances, machine learning algorithms 
are generic and can be easily applied to various intrusion 
detection problems.  

The attribute extraction step is specific to each 
detection problem. In the following section, we present the 
main steps that must be taken to create a supervised 
detection model by illustrating our remarks with the case of 
the detection of malicious PDF files. 

5. HOW TO BUILD A DETECTION MODEL? 

The first step before building a detection model with 
machine learning is to define the target, i.e. what you want 
to detect. This preliminary step was done for the problem 
of detecting malicious PDF files. 

Then, to create a detection model, you must: 

- collect learning data containing benign and 
malicious instances corresponding to the 
target. 

- define the attributes to extract to represent the 
instances in the form of digital vectors. 

 

 

Figure 2.  Explanation of the ROC curve. 

choose a type of classification model adapted to 
operational constraints. We now describe these three steps 
with generic tips and examples from the PDF file case 
study. 

A.  Obtain learning data 

Building a supervised detection model requires 
learning data for which the labels, benign or malicious, are 
known. This training data must contain benign and 
malicious instances corresponding to the detection target. 
However, obtaining learning data is often expensive, 
because associating a label with instances requires the 
knowledge of a security expert. There are publicly labeled 
data sets for certain detection problems (Malicia project, 
KDD99, kyoto2006, or Contagio for example), but for 
other problems, a data annotation phase must precede the 
construction of the model. This step can be tedious, but the 
effectiveness of the model will be directly linked to the 
composition of the learning game, this is why this step 
should not be overlooked. There are a few main principles 
to follow when building the learning game. First, it must 
have a sufficient number of instances for the detection 
model to be able to properly generalize benign and 
malicious behavior. Typically, it seems very difficult to 
learn a model if the training data contains less than a few 
hundred instances for each label. Furthermore, care must 
be taken not to have an overly unbalanced training data set 
with a label representing a very small proportion of the 
data. It is impossible to define general rules concerning the 
minimum number of instances necessary to learn a model, 
or the acceptable degree of imbalance, because these values 
depend on the detection problem considered and, on the 
instances, constituting the learning game. 
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In the case of detection of malicious PDF files, it is easy 
to obtain a labeled data set, since this type of file is popular 
and frequently used to propagate malicious code. The 
experiences presented in this paper are based on two data 
sets: Contagio (9,000 benign files and 11,101 malicious) 
and webPdf (2,078 benign files and 767 malicious). 
Contagio is a public dataset used in many academic works, 
and we built webPdf from benign files from the Google 
search engine and from malicious files obtained on the 
VirusTotal platform. 

B. Extracting discriminating attributes 

This step consists in processing the data in order to 
represent it in the form of vectors of digital attributes of 
fixed size usable by the learning algorithms. Attributes are 
digital characteristics extracted from the data that will 
allow the decision making of the classifier: the more they 
are discriminating for decision making, the more efficient 
the classifier will be. It is therefore necessary to have a 
good knowledge of the format and content of the data 
considered, and to have well defined the detection target to 
extract discriminating attributes. The attribute extraction 
phase is specific to each detection problem, but common 
techniques for extracting digital attributes can often be 
applied. We present some classic methods of extracting 
attributes, giving examples with the case of PDF files. 

PDF files contain two types of information that can be 
used to generate attributes: metadata (author or date of 
creation, for example), and a list of its objects. Some 
information is already digital, or a simple transformation 
can make it digital. For example, the file size is numeric, 
and the creation and modification dates can be transformed 
into timestamps. However, other information, such as the 
author or objects, is not numeric, and therefore cannot be 
directly exploited by machine learning algorithms. In 
addition, each PDF file has a variable number of objects: 
how to represent this information in the form of a vector of 
fixed size? 

Character strings Discriminating information can take 
the form of character strings. The extraction method that 
we used consists in transforming a character string into a 
vector of attributes where each attribute corresponds to a 
family of characters (capital letters, small letters, or 
numbers for example). The value of an attribute is 
determined by the number of occurrences, or the 
proportion, of this family in the character string. 

The author of a PDF file is a character string that we 
have transformed into 7 numeric attributes: size of the 
string, number of lowercase letters, capital letters, numbers 
For the detection of malicious PDF files, we have extracted 
120 digital attributes, similar to those presented in the work 
of Smutz and Stavrou [19, 20], which we can group into 
three categories: 

- File metadata (for example the author, or the 
date of creation); 

- File structure (for example the number of 
objects, or the average size of the objects); 

- Objects and keywords used in the file (for 
example the types of objects, or the number of 
image objects). 

4.3 Selection of the type of classification model 

All the intelligence of supervised learning lies in 
optimizing the parameters of the classification model from 
the training data for which the labels are known. This 
optimization phases is theoretically complex, but the great 
popularity of machine learning has gradually simplified its 
use with the emergence of many dedicated libraries (scikit-
learn in python, Spark, Mahout or Weka in java, or Vowpal 
Wabbit in C ++ for example), and solutions 

online like Google Cloud ML, Microsoft Azure or 
Amazon Machine Learning. This makes it easy to learn 
various classification models from learning data. Neural 
networks are so popular [8], especially thanks to their 
extraordinary results in computer vision, that the 
amalgamation between deep learning and machine learning 
is often made. Neural networks are only one type of 
classification model, and there are many others: decision 
trees, random forests (or Random Forests), k nearest 
neighbors, discriminating linear or quadratic analyzes, 
regressions logistics, support vector machines (or SVM for 
Support Vector Machine) or naive Bayesian classification 
to name a few. It is therefore necessary to choose a type of 
classification model suited to the detection problem 
considered and meeting the operational constraints of the 
detection systems mentioned in section 2. Linear 
classification models, such as logistic regression or support 
vector machines, are adapted to intrusion detection and we 
now detail how they respond to operational constraints. 
Fast predictions Most classification models have a learning 
phase which is very costly in computation time and which 
is carried out line but applying the model to new data is 
usually extremely fast. This is the case of linear 
classification models whose application is in O (d) where d 
is the number of attributes describing each instance. On the 
other hand, certain models, described as lazy, are to be 
avoided for intrusion detection. Indeed, they do not have a 
learning phase, and the entire learning data is therefore 
considered during the prediction phase. For example, the k 
nearest neighbors is a lazy model not suitable for intrusion 
detection. To predict the label of a new instance, you have 
to look for its k closest neighbors among all the training 
data, and then the predicted label is the one most 
represented. The predictions of this classification model 
have a time complexity in O (nd) which depends on the 
number of attributes d, but also on the number of training 
data n. However, in machine learning, it is desirable that n 
be large, and n increase over time when new instances are 
reinjected into the model following the analysis of the alerts 
generated. The prediction time of this classification model 
is far too long to be used in a detection system. 
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Periodic updating of the model When a detection 
system is in production, the security operator ensures its 
supervision by analyzing the alerts generated. Their 
primary purpose is to identify false alarms, but also to take 
the necessary action in the event of a security incident. 
However, their analyzes, both false and true positive, can 
be incorporated into the detection model to improve its 
detection capabilities. It is therefore essential that the 
model can be updated periodically without reconsidering 
the entirety of the training data used previously. Linear 
models perfectly meet this constraint. They can be learned 
in batch mode initially but can also be updated 
incrementally by taking into account only the new labeled 
data. 

Interpretable model Linear models have the great 
advantage of being interpretable. Thus, the administrator of 
the detection system can interpret the detection model, that 
is to say understand how he makes his decisions, before 
putting it into production in order to check its consistency. 
Then, the operator supervising the detection system can 
know the main causes responsible for generating an alert. 

6. VALIDATION ON LEARNING DATA 

We would like to point out that the performance of the 
detection model on its learning data is not a good 
evaluation of the model. Indeed, the goal of a detection 
model is not to correctly classify training data, but to be 
able to generalize, that is to say, to correctly classify data 
not used during its learning phase. However, analyzing the 
performance of the model on the training data can help 
detect the problem of under-learning. It is said that there is 
under-learning when the detection model has learned 
almost nothing from the training data. In this situation, the 
detection model behaves almost like a random generator. 
To diagnose under-learning, simply draw the ROC curve 
obtained on the training data and check that it is not too 
close to that of a random generator (cf. random curve in 
Figure 5). The expert has two options to resolve the under-
learning: add discriminating attributes or use a more 
complex type of classification model. When a model fails 
to discriminate between malicious and benign instances on 
learning data, it is often that the expert has not given good 
attributes as input. It is therefore necessary for it to resume 
the attribute extraction phase to add more discriminating 
characteristics. Sometimes the expert provided 
discriminating attributes, but the type of classification 
model chosen is not complex enough to discriminate 
against malicious instances of benign. Figure 6 (a) shows a 
two-dimensional dataset where a linear model is not 
complex enough to properly separate malicious instances 
from benign, whereas a quadratic model, slightly 

more complex, is perfectly suited (see Figure 6 (b)). 
However, using an extremely complex detection model is 
not a solution, because in this case we risk over learning. It 
is said that over-learning occurs when the classification 
model perfectly predicts the label of learning data but is 
unable to correctly predict the label of new data. The over-

learning problem can be diagnosed by analyzing the 
performance of the model on an independent validation set 
and is therefore presented in the following section. 

 

Figure 3.  Illustration of over-learning. The top line represents the 
training data, and the bottom line represents the validation data. The 

data with a cross correspond to classification errors. 

7. CONCLUSION 

In this article, we have described a methodology for 
solving the “black box” aspect often criticized by machine 
learning methods, and we illustrated it with a case study on 
the detection of malicious PDF files. Thanks to this 
methodology, it becomes possible to adapt machine 
learning to the reluctance of security experts, and to the 
constraints of intrusion detection systems. 

In particular, the article emphasizes the importance of 
the rigor of the model validation method before it goes into 
production. In fact, errors during the validation phase can 
overestimate the efficiency of a model, and therefore lead 
to unpleasant surprises during production. The validation 
methodology that we propose makes it possible to 
anticipate problems inherent in machine learning, and 
therefore to avoid additional costs linked to tests in 
production. 
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