

Fuzzy Dot Satisfactory Bck- Filters

S. A. Najati

Department of Mathematics and Statistics, Taif University, Taif, KSA

Abstract: The concept of fuzzy dot subalgebra of *BCK/BCI*-algebras was introduced by Jun and Hong paper [8]. In 2003 Jun [7] was introduced the concept of satisfactory *BCK*-filters. The concept of fuzzy satisfactory *BCK*-filters was introduced by Najati [13]. In this paper, we define the notion of fuzzy dot satisfactory *BCK*-filters and investigate some of its properties.

Keywords: BCK-algebras, filter, dot filter, satisfactory filter, fuzzy filter, fuzzy dot filter, fuzzy satisfactory filter, fuzzy dot satisfactory filter.

1. INTRODUCTION

The notion of BCK-algebra was introduced by Imai and Iseki in 1966 [5]. In the same year, Iseki [6] introduced the notion of BCI-algebra which is a generalization of a BCK-algebra. After the introduction of the concept of fuzzy sets by Zadeh [17], several researchers were conducted on the generalization of the notion of fuzzy sets. Jun and Hong in [8] introduced the notion of a fuzzy dot subalgebra of a BCK/BCI-algebras as a generalization of a fuzzy subalgebra and state a condition for a fuzzy dot subalgebra and prove several basic properties which are related to fuzzy dot subalgebra. In [12] Najati introduced the notion of fuzzy dot filters in BCK-algebras and investigate some of its properties. In [13] Najati introduced the notion of a fuzzy satisfactory filter in BCKalgebra and prove several basic properties which are related to fuzzy satisfactory filter. In this paper, we introduce the notion of fuzzy dot satisfactory BCK-filter and prove some their fundamental properties, and then we state a condition for a fuzzy subset to be a fuzzy dot satisfactory filter.

2. PRELIMINARIES

We review some basic definitions and properties that will be useful in our results. A *BCK-algebra* X is defined to be an algebra (X,*,0) of type (2,0) satisfying the following conditions.

 $BCK - 1 \ ((xy)(xz))(zy) = 0,$

BCK - 2 (x(xy))y = 0, BCK - 3 xx = 0, BCK - 4 0x = 0, $BCK - 5 xy = 0 \text{ and } yx = 0 \Rightarrow x = y,$ for all x, y, z $\in X$, where xy = x * y, and xy = 0 if and only if $x \le y$.

In a *BCK*-algebra *X*, the following properties hold for all $x, y, z \in X$:

P-1 x0 = x, P-2 (xy)z = (xz)y, P-3 $x \le y$ implies that $xz \le yz$ and $zy \le zx$, P-4 $(xz)(yz) \le xy$, P-5 $x \le y, y \le z \Rightarrow x \le z$, P-6 x(x(xy)) = xy, P-7 $xy \le x$.

A *BCK*-algebra *X* satisfying the identity x(xy) = y(yx), for all $x, y \in X$, is said to be *commutative*. If there is a special element 1 in a *BCK*-algebra *X* satisfying $x \le 1$, for all $x \in X$, then 1 is called a *unit* of *X*. A *BCK*-algebra *X* with unit is said to be *bounded*. In what follows let *X* denote a bounded *BCK*-algebra unless otherwise specified, and we will use the notation x^* instead 1*x* for all $x \in X$. In a bounded *BCK*-algebra *X* we have:

P-8
$$1^* = 0$$
 and $0^* = 1$.

P-9 $y \le x$ implies that $x^* \le y^*$.

P-10 $x^* y^* \leq yx$.

If X is a commutative bounded *BCK*-algebra, then the equalities $(x^*)^* = x$, $x^*y^* = yx$ hold, for all $x, y \in X$.

We review some fuzzy concepts. A fuzzy subset of a nonempty set *X* is a function $\mu: X \to [0,1]$. We shall use the notation X_{μ} for $\{x \in X | \mu(x) = \mu(1)\}$. The set $\mu_t = \{x \in X | \mu(x) \ge t\}$, where $t \in [0,1]$, is called the *t*-level subset of μ .

A nonempty subset of X Then F is called a *filter* of X, if it satisfies the conditions.

F-1 1 $\in X$,

F-2 $(x^*)^*y^* \in F, y \in F \Rightarrow x \in F$ for all $x, y \in X$.

A nonempty subset F of X is called a *satisfactory filter* of X, if it satisfies (F-1) and

F-3 $(x(y(yz)^*)^*)^* \in F, x \in F \Rightarrow (yz)^* \in F$, for all $x, y, z \in X$.

A *BCK*-algebra X satisfying (xz)(yz) = (xy)z, for all $x, y, z \in X$, is said to be *positive implicative*. A *BCK*-algebra X is positive implicative if and only if it satisfies xy = (xy)y, for all $x, y \in X$.

A fuzzy subset \mathcal{F} in X is said to be a *fuzzy filter* of X, if it satisfies:

FF-1 $\mathcal{F}(1) \geq \mathcal{F}(x)$,

FF-2 $\mathcal{F}(x) \ge \min\{\mathcal{F}((x^*y^*)^*), \mathcal{F}(y)\}\)$, for all $x, y \in X$. Note that every fuzzy filter is order preserving (see [9, Proposition 3.5]).

Definition 2.1. [12] A fuzzy subset \mathcal{F} in X is said to be a *fuzzy dot filter* of X, if it satisfies FF-1 and, FF-3 $\mathcal{F}(x) \ge \mathcal{F}((x^*y^*)^*)\mathcal{F}(y)$, for all $x, y \in X$.

Theorem 2.2. [12, Theorem 3.7] Let \mathcal{F} be a fuzzy subset of X and $\mathcal{F}(1) = 1$. Then

(i) $\mathcal{F}(xz)^* \geq \mathcal{F}(y)$ implies $\mathcal{F}(z) \geq \mathcal{F}(y)$,

(ii) $xy \le z$ implies $\mathcal{F}(y) \ge \mathcal{F}(x)\mathcal{F}(z^*)$.

Theorem 2.3. Let *X* be commutative and let \mathcal{F} be a fuzzy dot filter of *X*. Then for all $x, y \in X$

$$\mathcal{F}(x) \geq \mathcal{F}((xy)^*x)^*)$$

Proof. Let \mathcal{F} be a fuzzy dot filter of X. Then for all $x, y, z \in X$, we get:

$$((xy)^*x)^*(yx)^* = (yx)((xy)^*x)
\leq y(xy)^*
= (xy)y^*
= (xy)(1y)
\leq x1$$

Then

 $\mathcal{F}((xy)^*x)^* \leq \mathcal{F}(yx)^*$ Then by Theorem 2.2 we get: $\mathcal{F}(x) \geq \mathcal{F}((xy)^*x)^*)$

Definition 2.4. [13] A fuzzy subset \mathcal{F} in X is said to be a *fuzzy satisfactory filter* of X, if it satisfies FF-1, and FF-4 $\mathcal{F}((yz)^*) \ge min\{\mathcal{F}((x(y(yz)^*)^*)^*), \mathcal{F}(x)\}, \text{ for all } x, y, z \in X.$

= 0

3. FUZZY DOT SATISFACTORY FILTERS

Definition 3.1. A fuzzy subset \mathcal{F} in X is said to be a *fuzzy dot satisfactory filter* of X, if it satisfies FF-1, and FF-5 $\mathcal{F}((yz)^*) \ge \mathcal{F}((x(y(yz)^*)^*)^*)\mathcal{F}(x))$, for all $x, y, z \in X$.

Example 3.2. Let $X = \{0, a, b, 1\}$ be a bounded *BCK*-algebra with * defined by

*	0	а	b	1
0	0	0	0	0
а	а	0	а	0
b	b	b	0	0
1	1	b	а	0

Define \mathcal{F} of X by $\mathcal{F}(1) = 0.4$ and $\mathcal{F}(0) = \mathcal{F}(a) = \mathcal{F}(b) = 0.3$. Routine calculations give that \mathcal{F} is not a fuzzy filter of X. Also, a fuzzy subset v of X defined by v(0) = 0.3, v(1) = v(b) = 0.5, and v(a) = 0.6. Routine calculations give that v is not a fuzzy filter of X.

Remark 3.3. Every fuzzy satisfactory filter of X is a fuzzy dot satisfactory filter of X, since:

 $\mathcal{F}((xz)^*) \ge \min \left\{ \mathcal{F}((x(y(yz)^*)^*), \mathcal{F}(x)) \right\}$ $\ge \mathcal{F}_F((x(y(yz)^*)^*)^*) \mathcal{F}(x)$

But the converse may not be true as seen in above example, since v is a fuzzy dot satisfactory filter of X, but it is not a fuzzy satisfactory filter because:

 $v(10)^* = 0.3$ < min { $v((b(1(10)^*)^*), v(b)$ } = min{v(a), v(b)} = 0.5

Remark 3.4. If *F* be a nonempty satisfactory filter of *X*, and the fuzzy set \mathcal{F}_F of *X*, which defined by $\mathcal{F}_F(x) = s$ if $x \in F$ and $\mathcal{F}_F(x) = t$ if $x \notin F$, for all $s, t \in [0, 1]$ with s > t, then by [13, Theorem 4.4] \mathcal{F}_F is a fuzzy satisfactory filter of *X*. So, by above remark \mathcal{F}_F is a fuzzy dot satisfactory filter of *X*. In the following theorem we refer this remark with another proof.

Theorem 3.5. Let *F* be a nonempty satisfactory filter of *X* and let the fuzzy set \mathcal{F}_F of *X*, which defined by $\mathcal{F}_F(x) = s$ if $x \in F$ and $\mathcal{F}_F(x) = t$ if $x \notin F$, for all $s, t \in [0, 1]$ with s > t, then it is a fuzzy dot satisfactory filter of *X*.

Proof. Let *F* be a nonempty satisfactory filter of *X*, since $1 \in F$, we have $\mathcal{F}(1) = s \ge \mathcal{F}(x)$ for all $x \in X$. Now let $x, y, z \in X$. If $(x(y(yz)^*)^*)^* \in F$ and $x \in F$, then $(yz)^* \in F$, then

 $\mathcal{F}_F(yz)^* = s \ge \mathcal{F}_F((x(y(yz)^*)^*)^*)\mathcal{F}_F(x)$ If $(x(y(yz)^*)^*)^* \notin F$ or $x \notin F$, then

 $\mathcal{F}_F((x(y(yz)^*)^*)^*)\mathcal{F}_F(x) = st \le \mathcal{F}_F(yz)^*$

It follows that \mathcal{F}_F is a fuzzy dot satisfactory filter of X.

Theorem 3.6. Let \mathcal{F} be a fuzzy dot satisfactory filter of X, then $X_{\mathcal{F}} = \{x \in X | \mathcal{F}(x) = 1\}$ is either empty or satisfactory filter of X.

Proof. Suppose that \mathcal{F} is a fuzzy dot satisfactory filter of X, clearly $1 \in X_{\mathcal{F}}$. Now let $X_{\mathcal{F}} \neq \emptyset$. Let $x, y, z \in X$, and let $(x(y(yz)^*)^*)^* \in X_{\mathcal{F}}$ and $x \in X_{\mathcal{F}}$, then:

 $\mathcal{F}(yz)^* \ge \mathcal{F}((x(y(yz)^*)^*)\mathcal{F}(x) = 1$

So $(yz)^* \in X_{\mathcal{F}}$, then $X_{\mathcal{F}}$ is a satisfactory filter of X.

Proposition 3.7. Let \mathcal{F} be a fuzzy dot satisfactory filter of X. Then for all $x \in X$, $\mathcal{F}(0) \ge \mathcal{F}(x^*)\mathcal{F}(x)$. **Proof.** Let $x \in X$, then: $\mathcal{F}(0) = \mathcal{F}(10)^* \ge \mathcal{F}(x(1(10)^*)^*\mathcal{F}(x) = \mathcal{F}(x^*)\mathcal{F}(x)$.

Lemma 3.8. [7, Theorem 3.13] Let X be commutative and $G^* = \{x^* | x \in G\}$ for every nonempty subset G of X. Then G^* is a satisfactory filter of X if and only if G is a positive implicative ideal of X.

Theorem 3.9. Assume that *X* is commutative. Let *G* be a nonempty subset of *X* and \mathcal{F}_{G^*} a fuzzy set in *X* defined by:

$$\mathcal{F}_{G^*} = \begin{cases} s & if \ x \in G^* = \{x^* | x \in G\}, \\ t & otherwise, \end{cases}$$

for all $x \in X$ and $0 \le t < s \le 1$. If *G* is a positive implicative ideal of *X*, then \mathcal{F}_{G^*} is a fuzzy dot satisfactory filter of *X*.

Proof. Assume that *G* is a positive implicative ideal of *X*, then by Lemma 3.8. G^*

is a satisfactory filter of X , So \mathcal{F}_{G^*} is a fuzzy dot satisfactory filter of X by Theorem 3.5.

Theorem 3.10. Let \mathcal{F} be a fuzzy set of X. If \mathcal{F}_t is a satisfactory filter of X for all $t \in [0, 1]$ where $\mathcal{F}_t \neq \emptyset$, then \mathcal{F} is a fuzzy dot satisfactory filter of X.

Proof. Assume that \mathcal{F}_t is a satisfactory filter of *X* for all $t \in [0, 1]$, and $\mathcal{F}_t \neq \emptyset$, we claim that (FF-1) and (FF-4) are true. If (FF-1) is not true, then there is $x_0 \in X$ be such that, $\mathcal{F}(1) < \mathcal{F}(x_0)$. Put $t_0 = \frac{1}{2} \{\mathcal{F}(1) + \mathcal{F}(x_0)\}$. Then $t_0 \in \mathbb{F}(x_0)$.

[0, 1] and $\mathcal{F}(1) < t_0 < \mathcal{F}(x_0)$, which implies that $x_0 \in \mathcal{F}_{t_0}$ and $\mathcal{F}_{t_0} \neq \emptyset$. So \mathcal{F}_{t_0} is a satisfactory filter of *X* by assumption. It follows from $1 \in \mathcal{F}_{t_0}$ that $\mathcal{F}(1) \ge t_0$ which is a contradiction. Therefore (FF-1) holds. Suppose that (FF-4) is false. Then there are $x_0, y_0, z_0 \in X$ such that:

$$\begin{split} \mathcal{F}((y_0z_0)^*) &< \mathcal{F}((x_0(y_0(y_0z_0)^*)^*)^*)\mathcal{F}(x_0)\\ \text{Taking}\\ s_0 &= \frac{1}{2} \{\mathcal{F}((y_0z_0)^*) + \mathcal{F}((x_0(y_0(y_0z_0)^*)^*)^*)\mathcal{F}(x_0)\},\\ \text{we get } s_0 \in [0,1] \text{ and} \end{split}$$

 $\mathcal{F}((y_0z_0)^*) < s_0 < \mathcal{F}((x_0(y_0(y_0z_0)^*)^*)^*) \mathcal{F}(x_0)$ It follows from the right-hand side of the above inequality that:

$$(x_0(y_0(y_0z_0)^*)^*)^* \in \mathcal{F}_{s_0} \text{ and } x_0 \in \mathcal{F}_{s_0}$$

Since \mathcal{F}_{s_0} is a satisfactory filter of X it follows form $(y_0z_0)^* \in \mathcal{F}_{s_0}$, that $\mathcal{F}((y_0z_0)^*) \ge s_0$ so, which is impossible. Hence (FF-4) is also valid. Consequently, \mathcal{F} is a fuzzy dot satisfactory filter of X.

Theorem 3.11. [12, Theorem 3.8] Let *X* be a commutative and \mathcal{F} and a fuzzy subset of *X*. Then \mathcal{F} fuzzy dot filter of *X* if and only if it satisfies for all $x, y \in X, \mathcal{F}(x) \geq \mathcal{F}(yx)^* \mathcal{F}(y)$.

Theorem 3.12. If *X* is commutative, then every fuzzy dot satisfactory filter of *X* is a fuzzy dot filter of *X* **Proof.** Let \mathcal{F} be a fuzzy dot satisfactory filter of *X* and $x, y \in X$. Since $x^{**} = x$, we get $(xy)^* = (x(y^{**})^{**})^*$. it follows from FF-5 that:

$$\begin{aligned} \mathcal{F}(y) &= \mathcal{F}(y^{**}) \\ &\geq \mathcal{F}(x(1(1y)^*)^*)^* \, \mathcal{F}(x) \\ &= \mathcal{F}(xy)^* \, \mathcal{F}(x) \end{aligned}$$

So, from Theorem 3.10. that \mathcal{F} is a fuzzy dot filter of X.

The converse of above theorem may not be true as seen in the following example.

Example 3.13. Let $X = \{0, a, b, 1\}$ be a bounded *BCK*-algebra with * defined by:

*	0	а	b	1	
0	0	0	0	0	
а	а	0	0	0	
b	b	а	0	0	
1	1	b	а	0	
T (1) 1 T ()					

Define \mathcal{F} of X by $\mathcal{F}(1) = 1$ and $\mathcal{F}(x) = t, t \in [0, 1]$ for all $x \neq 1$. Routine calculations give that \mathcal{F} is a fuzzy dot filter of X, but it is not fuzzy dot satisfactory filter of X, because.

 $\mathcal{F}(ba)^* = t \ge 1 = \mathcal{F}((1(b(ba)^*)^*)^*)\mathcal{F}(1)$ **Theorem 3.14.** [12, Proposition 3.4] Every fuzzy dot filter \mathcal{F} of X with $\mathcal{F}(1) = 1$ is order preserving. **Remark 3.15**. By Theorem 3.12 and Theorem 3.14 if X is commutative, and \mathcal{F} is a fuzzy dot satisfactory filter of X with $\mathcal{F}(1) = 1$, then it is a fuzzy dot filter, so it is preserving.

We give conditions for a fuzzy dot filter to be a fuzzy dot satisfactory filter of X.

Theorem 3.16. Let X be a commutative and positive implicative. Then every fuzzy dot filter of X is a fuzzy dot satisfactory filter of X.

Proof. Let \mathcal{F} be a fuzzy dot filter of X. Since $(yz)^* = (z^*y^*)^* = ((z^*y^*)y^*)^* = ((yz)y^*)^* =$ $(y(yz)^*)^*$ for all $y, z \in X$, it follows from Theorem 3.10. $\mathcal{F}((yz)^*) = \mathcal{F}((y(yz)^*)^*) \ge \mathcal{F}((x(y(yz)^*)^*)^*)\mathcal{F}(x)$ So that \mathcal{F} is a fuzzy dot satisfactory filter of X.

Theorem 3.17. Let *X* be a commutative and let \mathcal{F} be a fuzzy dot satisfactory filter of *X* where $\mathcal{F}(1) = 1$. Then for all $x, y \in X$

 $\mathcal{F}((xy)^*) \ge \mathcal{F}((x(xy)^*)^*)$ (1) **Proof.** Let \mathcal{F} be a fuzzy dot satisfactory filter of X, then $\mathcal{F}((xy)^*) \ge \mathcal{F}((1(x(xy)^*)^*)^*)\mathcal{F}(1))$ $= \mathcal{F}((((x(xy)^*)^*)^*)^*)$ $= \mathcal{F}((x(xy)^*)^*)$

for all $x, y \in X$. Therefore (1) holds.

Theorem 3.18. Every fuzzy dot filter of X satisfying (1) is a fuzzy dot satisfactory filter of X.

Proof. Let \mathcal{F} be a fuzzy dot filter of *X* satisfying (1), then by Theorem 3.11.

 $\mathcal{F}((yz)^*) = \mathcal{F}((y(yz)^*)^*) \ge \mathcal{F}((x(y(yz)^*)^*)^*) \mathcal{F}(x)$ for all *x*, *y*, *z* \in *X*. Therefore, \mathcal{F} is a fuzzy dot satisfactory filter of *X*.

Theorem 3.19. Let *X* be a commutative and let \mathcal{F} be a fuzzy dot filter of *X*. Then for all $x, y \in X$ $\mathcal{F}(x) \ge \mathcal{F}((xy)^*x)^*)$

Proof. Let \mathcal{F} be a fuzzy dot filter of X, then:

$$((xy)^{*}x)^{*} = (yx)((xy)^{*}x) \\ \leq y(xy)^{*} \\ = (xy)y^{*} \\ = (xy)(1y) \\ \leq x1 \\ = 0$$

for all $x, y \in X$, then $\mathcal{F}((xy)^*x)^* \leq \mathcal{F}(yx)^*$, then by Theorem 2.2 (i) we get:

$$\mathcal{F}(x) \geq \mathcal{F}((xy)^* x)^*)$$

Theorem 3.20. Let *X* be a commutative and let \mathcal{F} be a fuzzy dot filter of *X* where $\mathcal{F}(1) = 1$. Then the following are equivalent for all *x*, *y*, *z* \in *X*

i. \mathcal{F} is a fuzzy dot satisfactory filter of X,

ii.
$$\mathcal{F}(y) \ge \mathcal{F}((x(yz)^*y))^*)\mathcal{F}(x)$$
.

Proof. $(i) \Rightarrow (ii)$ Let \mathcal{F} be a fuzzy dot satisfactory filter of *X*, by Theorem 3.11 and Theorem 3.19 we have

 $\mathcal{F}(y) \ge \mathcal{F}((yz)^*y)^*) \ge \mathcal{F}(x((yz)^*y)^*)\mathcal{F}(x)$ Thus (ii) is valid.

 $(ii) \Rightarrow (i)$ Assume that a fuzzy dot filter \mathcal{F} of X satisfies the condition (ii), for all $x, y \in X$, it follows from (ii) that:

$$\mathcal{F}(x) \ge \mathcal{F}((((xy)^*x)^*)^{**})\mathcal{F}(1) \ge \mathcal{F}(((xy)^*x)^*)$$

Thus

 $\mathcal{F}(x) \ge \mathcal{F}(((xy)^*x)^*) \qquad (1^*)$ for all $x, y \in X$. Taking $x = (xy)^*$ in (1^*) implies that $\mathcal{F}(xy)^* \ge \mathcal{F}(((xy)^*y)^*(xy)^*)^* \qquad (2^*)$

On the other hand, note that:

$$(((xy)^*y)^*(xy)^*)^* = ((xy)((xy)^*y))^*$$

= ((y*(x*)(y*(xy)))*
= ((y*(xy)))x*)*
= (((xy)((xy)y*))x*)*
= (((y*x*)((y*x*)y*))x*)*
= (((y*x*)x*)((y*x*)y*))*
= (((y*x*)x*)((y*y*)x*))*
= (((y*x*)x*)((0)x*))*
= (((y*x*)x*)(0)x*))*
= (((y*x*)x*)0)*
= (((y*x*)x*))*
= (x(xy)*)*

It follows from (2^{*}) that $\mathcal{F}(xy)^* \geq \mathcal{F}(x(xy)^*)^*$, so from Theorem 3.18 that \mathcal{F} is a fuzzy dot satisfactory filter of X.

Theorem 3.21. Let $\{\mathcal{F}_i\}$, where $i \in N$ be a family of fuzzy dot satisfactory filter of X, then so is $\bigcap_{i \in I} \mathcal{F}_i$. **Proof.** Let for all $x, v \in X$, we get

$$\begin{split} &\cap_{i\in I} \mathcal{F}_{i}(1) = \min_{i\in I} \{\mathcal{F}_{i}(1)\} \\ &\geq \min_{i\in I} \{\mathcal{F}_{i}(x)\} \\ &= \cap_{i\in I} \mathcal{F}_{i}(x) \\ &\cap_{i\in I} \mathcal{F}_{i}(yz)^{*} = \min_{i\in I} \{\mathcal{F}_{i}(yz)^{*}\} \\ &\geq \min_{i\in I} \{\mathcal{F}_{i}(x(y(yz)^{*})^{*})^{*} \mathcal{F}_{i}(x)\} \\ &\geq (\min_{i\in I} \{\mathcal{F}_{i}(x(y(yz)^{*})^{*})^{*})(\min_{i\in I} \{\mathcal{F}_{i}(x)\} \\ &= (\cap_{i\in I} \mathcal{F}_{i}(x(y(yz)^{*})^{*})^{*})(\cap_{i\in I} \mathcal{F}_{i}(x)) \\ \end{split}$$
Hence $\cap_{i\in I} \mathcal{F}_{i}$ is a fuzzy dot satisfactory filter of X .

In the following example we can see if $\{\mathcal{F}_i\}$, where $i \in N$ is a family of fuzzy dot satisfactory filter of *X*, then $\bigcup_{i \in I} \mathcal{F}_i$ may not be a fuzzy dot satisfactory filter of *X*.

Example 3.23. Let $X = \{0, a, b, 1\}$ be a bounded *BCK*algebra with * defined as in Example 3.2. and let fuzzy dot satisfactory filter ν of X which defined by $\nu(0) = 0.3$, $\nu(a) = 0.4$ and $\nu(b) = \nu(1) = 0.5$. Defined the fuzzy subset λ of X by $\lambda(1) = \lambda(a) = 1$ and $\lambda(0) = \lambda(b) =$ 0.1. Routine calculations give that λ is a fuzzy dot filter of *X*. But $\nu \cup \lambda$ is not fuzzy dot filter, because: $(\nu \cup \lambda)(10)^* = \max\{\nu(10)^*, \lambda(10)^*\} = 0.3$ $< \nu \cup \lambda((a(1(10)^*)^*)^*) \cup \lambda(a)$ $= \max\{\nu((a(1(10)^*)^*)^*), \lambda((a(1(10)^*)^*)^*)\} \max\{\nu(a), \lambda(a)\}$ $= (\max\{0.1, 0.5\})(\max\{1, 0.4\} 0) = (0, 5)(1) = 0.5$

4. CONCLUSION

The concept of fuzzy dot subalgebra of BCK/BCIalgebras was introduced by Jun and Hong paper [8]. In 2003 Jun [7] was introduced the concept of satisfactory BCK-filters. The concept of fuzzy satisfactory BCK-filters was introduced by Najati [13]. In this paper, we define the notion of fuzzy dot satisfactory BCK-filters and investigate some of its properties.

REFERENCES

- B. Ahmad, Dual ideals in BCK-algebra I, Math. Seminar Notes (presently, Kobe Jr. of Maths), 10 (1982), 243-250.
- [2] B. Ahmad, Dual ideals in BCK-algebra II, Math. Seminar Notes, 10 (1982), 653-655.
- [3] B. Ahmed, Characterizations of dual ideals in BCK-algebras, Math. Seminar Notes, 10 (1982), 647-652.
- [4] E. Y. Deeba, A characterization of complete BCK-algebra, Math. Seminar Notes (presently, Kobe Jr. of Maths), 7 (1979), 343-349.
- [5] Y. Imai and K. Ise'ki, On axiom systems of propositional calculi XIV, Proc. Japan Acad., 42 (1966), 26-29.
- [6] K. Ise'ki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 351-366.
- [7] Y. B. Jun, Satisfactory filters of BCK-algebras, Math. Japon., (9) (2003), 1-7.
- [8] Y. B. Jun and S. M. Hong, Fuzzy subalgebras of BCK/BCIalgebras redfined, Math. Japon., 4{2004), 769-775.
- [9] Y. B. Jun, S. M. Hong and J. Meng, Fuzzy BCK-filters, Math. Japon., 47 (1) (1998), 45-49.
- [10] Y. B. Jun, J. Meng and X. L. Xin, On fuzzy BCK-filters, Korean J. Comput. Appl. Math., 5 (1) (1998), 91-97.
- [11] J. Meng, BCK-filters, Math. Japon., 44 (1996), 119-129.
- [12] S. A. Najati, Fuzzy dot BCK-filters, IJSAR, 2(4) (2021), 1301-1303.
- [13] S. A. Najati, Fuzzy satisfactory BCK-filters, IJSAR, 2(5) (2021), 1447-1450.
- [14] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa Co. Korea, (1994).
- [15] E. Roh and Y. B. Jun, On BCK-filters, Far East J. Math. Sci. II (1997), 181-188.
- [16] O. G. Xi, Fuzzy BCK-algebras, Math. Japon., 36 (1991), 935-942.
- [17] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.