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Abstract: At the start of the simulation, the agent knows nothing about how the dynamics of interaction with the environment 

unfold, or what causes his sensations. He does not distinguish obstacles from free paths, and he does not know the consequences 

implied by his actions. Under these conditions, the CALM mechanism was able to converge steadily towards the expected solution, 

by building a model of the world adequate to represent the regularities of the environment, the regularities of its bodily sensations, as 

well as to represent the influence regular actions on both. The agent learns about the consequences of his actions in different 

situations, which are represented by a reduced number of very general diagrams. From them, the mechanism can build an action 

policy that allows it to avoid affectively negative situations and to seek those that are affectively positive. This solution manages to 

describe precisely all the regularities that the agent can perceive without building a complete plan of the environment.  
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1. INTRODUCTION  

Intrusion detection systems are traditionally based on 
signatures generated manually by security experts. 
However, Big Data, artificial intelligence, Machine 
Learning (automatic learning in French) or Deep Learning 
(deep learning in French) are often presented as 
technologies that can revolutionize intrusion detection 
systems [1,5]. Indeed, these methods induce detection 
rules automatically from data, and their generalization 
capabilities allow them to detect malicious events that are 
still unknown. Many research papers on the application of 
machine learning to intrusion detection have been 
published and often show exceptional results (detection of 
malicious PDFs [6], of malicious executable files [4], or 
botnets [2,3]). However, from an operational point of 
view, there are still many reservations about the use of 
machine learning in production: 

- A detection system based on learning methods 
automatic can it process in real time? 

- Is the false positive rate of machine learning 
methods, often presumed to be too high, 
acceptable for them to be put into production? 

- Machine learning is not the core business of a 
security expert, yet it is on him that the 
implementation of a detection system rests. How 
can he trust these methods to put them into 
production? 

- Are the alerts generated by such a detection 
system sufficiently interpretable to allow their 
exploitation in production? 

In this paper, we answer the questions mentioned 

above by providing solutions so that machine learning 

methods are not incompatible with operational 

constraints, and that they can thus be integrated into 

detection systems in addition to other methods. , like the 

signatures. First, we briefly present the problem of 

intrusion detection and give a general overview of 

machine learning in this context (see section 2). Then, we 

present a case study: the detection of malicious PDF files 

(see section 3). This example will then be used to 

illustrate good practices for learning and validating a 

detection model, and to highlight pitfalls sometimes 

omitted in academic publications (see sections 4 and 5). 

Finally, we present the free SecuML tool (cf. section 6) 

allowing in particular to build a detection model and to 

validate it upstream of its production with the good 

practices exposed in the paper. 

2. INTRUSION DETECTION AND MACHINE 

LEARNING 

The role of an intrusion detection system is to detect 
malicious events through the network and system 
activities that it analyzes. A suspicious event can be the 
recovery of a malicious file attached to an email or the 
visit to a corrupt website for example. 
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The detection system administrator is notably 
responsible for setting up detection methods, and for 
developing them over time. The security operator 
analyzes and qualifies the alerts in order to allow the 
necessary measures to be taken to deal with any possible 
security incidents. This work can be costly. 

Intrusion detection systems are traditionally based on 
signatures: detection rules constructed by an expert 
following an in-depth analysis of malicious events. This 
approach is effective against threats that have already 
been observed and for which a signature has been 
generated, but it is often ineffective in detecting new 
threats. In addition, simple variations of the threat, such as 
polymorphism [5], may be enough to render the signature 
ineffective. Signatures are ubiquitous in current detection 
systems, but detection methods with machine learning are 
considered in addition to better detect new threats. In this 
section, we present the two main categories of machine 
learning methods that can complement the signature 
approach: anomaly detection and supervised learning. 

A. Anomaly detection 

Anomaly detection is the first machine learning 
method that has been applied to intrusion detection [2]. 
This approach only requires non-malicious data to build 
the detection model. The model will then generate an alert 
as soon as an event differs too much from the normal 
behavior induced by the benign data initially provided. 

Anomaly detection methods are very attractive 
because they allow the detection of unknown threats. 
They have no preconceptions about what is a malicious 
event and are therefore prone to detect new threats. In 
addition, putting them into production is often presented 
as very simple: all you need is a benign dataset devoid of 
malicious activity. Obtaining such a dataset is not easy in 
practice, however, as there is no simple way to ensure that 
there is no malicious activity. If the supposedly healthy 
dataset contains malicious activity, this can distort the 
learning of the model and prevent the detection of certain 
threats. These detection systems are simple in principle, 
but rarely in practice, and putting them into production 
can be very complex. In addition, anomaly detection 
methods raise alerts for abnormal events that are not 
necessarily malicious. For example, an abnormal 
transmission / reception ratio on HTTPS can be a sign of 
data exfiltration, but can also be caused by the use of 
certain social networks; popular websites can be the 
source of seemingly abnormally large data traffic without 
being malicious; and simple configuration errors can also 
lead to behaviors triggering false alerts. Thus, these 
detection methods often suffer from a high rate of false 
positives. Finally, the detection of anomalies offers few 
possibilities for taking into account expert knowledge. 
Indeed, experts cannot guide these models by providing 
examples of malicious events as they only take into 
account mild events. 

B. Supervised learning 

Supervised learning responds to this need to integrate 
expert knowledge. Indeed, a supervised detection model is 
constructed from labeled data provided by the expert: 
mild events, but also malicious events to guide the 
detection model. The learning algorithm will 
automatically look for the points allowing to characterize 
each of the classes or to discriminate them to build the 
detection model. Once the detection model is learned on a 
training dataset, it can be applied automatically to detect 
malicious events. Thanks to supervised learning, the 
security operator supervising the detection system can 
easily participate in improving the detection model based 
on the alerts that he analyzes. Indeed, false alerts can be 
reinjected to correct the detection model and thus avoid 
generating the same false alerts in the future. The real 
alerts can also be fed back into the model to let it follow 
the evolution of the threat. Thus, security experts do not 
give control of the detection system to an automatic 
model, but they actively supervise it to improve its 
performance over time [5]. 

Finally, supervised learning is guided by malicious 
examples provided by the expert, which reduces the rate 
of false positives compared to the detection of anomalies. 
Supervised methods are therefore to be preferred when 
labeled data are available to train the detection model. 
However, these methods must be applied taking into 
account the operational constraints of the detection 
systems. The detection model must be able to process data 
in real time, and the false positive rate must remain below 
a certain threshold to prevent the security operator from 
being overwhelmed by false alerts. Finally, the 
administrator must have confidence in the model to put it 
into production, and the operator must be able to 
understand the alerts generated. In the rest of the paper, 
we give a methodology so that machine learning meets 
these constraints, and so that it can be integrated into 
detection systems to better detect new threats. 

3. CASE STUDY: DETECTING MALICIOUS PDF 

FILES 

In this section, we present the problem of detecting 
malicious PDF files based on machine learning. The rest 
of the article will use this case study to illustrate good 
practices and highlight the pitfalls to avoid when using 
machine learning to build a detection model. 

A. Problem  

The PDF format is an open document description 
format, created by the Adobe company in 1993, aimed at 
preserving the formatting regardless of the reading 
software or the operating system used. Among other 
things, it consists of a number of metadata such as the 
author, the date of production, as well as objects of 
different types referenced in a table called Xref. These 
objects can be in particular text, images, video or even 
JavaScript code. Its richness and the availability of readers 
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on different platforms make it a format widely used in 
most organizations for creating and exchanging electronic 
documents. On the other hand, the volume of associated 
specifications (more than 1,300 pages available publicly) 
implies significant software complexity, amplified by 
dependencies with numerous third-party libraries. Also, 
this software is often subject to vulnerabilities, which 
make PDF format even more attractive to attackers. 

In the majority of cases, malicious PDF files are 
forged by the attacker to exploit a vulnerability, in order 
to execute code and compromise the victim's machine (for 
example JavaScript code exploiting a vulnerability of the 
JavaScript engine included in the reader, or a TTF font 
exploiting an OS vulnerability). Among the elements that 
we can try to locate to detect malicious PDF files, we can 
note: 

the presence of a malicious charge (a shellcode, etc.); 

- Functions to deceive detection (obfuscation by 
encryption, multiple encodings, concealment of 
objects, etc.). 

- The more or less realistic nature of the files 
(malformations, low number of pages and / or 
objects, etc.). 

Supervised learning is preferred in the context of 
intrusion detection systems (see section 2), and it is easy 
to obtain benign and malicious PDF files using 
Contagio3, VirusTotal4, or the Google search for 
example. So we chose supervised learning to build a 
model for detecting malicious PDF files. The following 
section outlines the main steps in the use of supervised 
learning, and describes the performance estimators for 
properly evaluating a detection model. 

B. Supervised learning 

Two phases: learning and prediction Supervised 
learning can be used for intrusion detection via a binary 
classifier (see Figure 1). The classifier takes as input an 
instance, a PDF file for example, and returns as output the 
predicted label, benign or malicious (in green and red in 
the figure). This classifier can also be called a detection 
model in the context of intrusion detection. 

Supervised learning has two main stages: 

1. learning the classifier from labeled data. 

2. use of the classifier to detect malicious instances. 

4. APPROACH AND METHODOLOGY 

Once the classifier is trained from the training data, it 
can be used to predict the label of a PDF file. In practice, 
most classifiers do not simply predict a binary value 
(benign vs. malicious), but rather a probability of 
maliciousness (see Figure 3). An alert is then generated 
only if the probability of malicious attack is greater than 
the detection threshold set by the administrator of the 
detection system. In the example in Figure 3, an alert will 

be raised for the PDF file considered only if the detection 
threshold is less than 75%. The probability of malicious 
acts predicted by the detection model makes it possible to 
classify the alerts according to the trust of the model, and 
therefore to define the priority of the alerts that the 
operator supervising the detection system must deal with. 
Performance estimators A detection model is not perfect; 
it can make prediction errors. It is essential to validate it, 
that is to say to measure the relevance of the alerts 
generated, before putting it into production. 

The best known performance estimator is the 
classification error rate which is equal to the percentage of 
poorly classified instances. However, in the case of 
intrusion detection, the data is generally very 
asymmetrical (with a small proportion of malicious 
instances), and the error rate is not able to correctly 
estimate the performance of a classifier. in this situation. 
Here is an example showing the limits of the classification 
error rate. We consider 100 instances: 2 malicious and 98 
benign. In this situation, a foolish detection model that 
always predicts benign will have a classification error rate 
of only 2% when it is not able to detect the slightest 
malicious instance. In order to correctly analyze the 
performance of a detection model, the first step consists in 
writing the confusion matrix which takes into account the 
two types of possible errors: false positives, i.e. false 
alerts lifted for benign instances, and false negatives, that 
is, undetected malicious instances. Figure 2 explains the 
content of a confusion matrix. 

A detection model must be evaluated with these two 
performance estimators taken together. Indeed, the rate of 
false positives must be low so that the security operator 
supervising the detection system is not overwhelmed by 
false alerts. The detection rate must be high to avoid too 
many threats remaining undetected. The detection 
threshold determines the sensitivity of the detection: 
lowering this threshold increases the detection rate, but 
also the rate of false alerts. It is therefore set by the 
detection system administrator according to the desired 
compromise between detection rate and false positive rate. 
The performance estimators that we have just presented 
depend on the value of the detection threshold. Another 
performance estimator, which has the advantage of being 
independent of this threshold, is often used in detection: 
the receiver efficiency function, more frequently referred 
to as the ROC5 curve [9]. This curve represents the 
detection rate as a function of the false positive rate for 
various detection thresholds (see Figure 5). For a 
threshold of 100%, the detection and false alarm rates are 
zero, and for a threshold of 0% they are both at 100%. A 
detection model is all the more efficient as its curve is 
close to the upper left corner: a high detection rate for a 
low rate of false alerts. The area under the ROC curve, 
called AUC6, is often calculated to estimate the 
performance of a detection model independently of the 
detection threshold, and its value must be close to 1. A 
classifier randomly predicting the probability of malicious 
attack a for ROC curve the red line represented in figure 
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3. Thus, the ROC curve of a classifier must always be 
above this line (otherwise a random classifier has better 
performance ...), and the AUC is at a minimum 0.5. The 
ROC curve is not only a performance estimator, but it also 
allows the detection system administrator to choose the 
detection threshold value according to the desired 
detection rate or the tolerated false alarm rate. Generic 
method Our presentation of supervised learning was based 
on the example of the detection of malicious PDF files, 
but the instance can also represent a DOC file, traffic 
associated with an IP address or a web page for example. 
Machine learning algorithms do not take raw instances as 
input, but a representation in the form of vectors of digital 
attributes7 of fixed size. Thanks to this representation of 
instances, machine learning algorithms are generic and 
can be easily applied to various intrusion detection 
problems. The attribute extraction step is specific to each 
detection problem. In the following section, we present 
the main steps that must be taken to create a supervised 
detection model by illustrating our remarks with the case 
of the detection of malicious PDF files. 

 

Figure 1.  Wepp 125 x 125: Q-Learning x CALM 1. 

 

Figure 2.  Extensibility analysis. 

 

Figure 3.  Wepp 125 x 125: Q-Learning x CALM 2. 

 

 

Figure 4.  Wepp 125 x 125: Q-Learning x CALM 3. 

5. HOW TO BUILD A DETECTION MODEL? 

The first step before building a detection model with 
machine learning is to define the target, i.e. what you want 
to detect. This preliminary step was done for the problem 
of detecting malicious PDF files in section 3.A. Then, to 
create a detection model, you must: 

- collect learning data containing benign and 
malicious instances corresponding to the target. 

- define the attributes to extract to represent the 
instances in the form of digital vectors. 

Choose a type of classification model adapted to 
operational constraints. We now describe these three steps 
with generic tips and examples from the PDF file case 
study. 

A.  Obtain learning data 

Building a supervised detection model requires 
learning data for which the labels, benign or malicious, 
are known. This training data must contain benign and 
malicious instances corresponding to the detection target. 
However, obtaining learning data is often expensive, 
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because associating a label with instances requires the 
knowledge of a security expert. There are publicly labeled 
data sets for certain detection problems (Malicia project, 
KDD99, kyoto2006, or Contagio for example), but for 
other problems, a data annotation phase must precede the 
construction of the model. This step can be tedious, but 
the effectiveness of the model will be directly linked to 
the composition of the learning game, this is why this step 
should not be overlooked. There are a few main principles 
to follow when building the learning game. First, it must 
have a sufficient number of instances for the detection 
model to be able to properly generalize benign and 
malicious behavior. Typically, it seems very difficult to 
learn a model if the training data contains less than a few 
hundred instances for each label. Furthermore, care must 
be taken not to have an overly unbalanced training data 
set with a label representing a very small proportion of the 
data. It is impossible to define general rules concerning 
the minimum number of instances necessary to learn a 
model, or the acceptable degree of imbalance, because 
these values depend on the detection problem considered 
and on the instances constituting the learning game. 

In the case of detection of malicious PDF files, it is 
easy to obtain a labeled data set, since this type of file is 
popular and frequently used to propagate malicious code. 
The experiences presented in this paper are based on two 
data sets: Contagio (9,000 benign files and 11,101 
malicious) and webPdf (2,078 benign files and 767 
malicious). Contagio is a public dataset used in many 
academic works, and we built webPdf from benign files 
from the Google search engine and from malicious files 
obtained on the VirusTotal platform. 

B. Extracting discriminating attributes 

This step consists in processing the data in order to 
represent it in the form of vectors of digital attributes of 
fixed size usable by the learning algorithms. Attributes are 
digital characteristics extracted from the data that will 
allow the decision making of the classifier: the more they 
are discriminating for decision making, the more efficient 
the classifier will be. It is therefore necessary to have a 
good knowledge of the format and content of the data 
considered, and to have well defined the detection target 
to extract discriminating attributes. The attribute 
extraction phase is specific to each detection problem, but 
common techniques for extracting digital attributes can 
often be applied. We present some classic methods of 
extracting attributes, giving examples with the case of 
PDF files. 

PDF files contain two types of information that can be 
used to generate attributes: metadata (author or date of 
creation, for example), and a list of its objects. Some 
information is already digital, or a simple transformation 
can make it digital. For example, the file size is numeric 
and the creation and modification dates can be 
transformed into timestamps. However, other information, 
such as the author or objects, is not numeric, and therefore 
cannot be directly exploited by machine learning 

algorithms. In addition, each PDF file has a variable 
number of objects: how to represent this information in 
the form of a vector of fixed size? 

Character strings Discriminating information can take 
the form of character strings. The extraction method that 
we used consists in transforming a character string into a 
vector of attributes where each attribute corresponds to a 
family of characters (capital letters, small letters, or 
numbers for example). The value of an attribute is 
determined by the number of occurrences, or the 
proportion, of this family in the character string. The 
author of a PDF file is a character string that we have 
transformed into 7 numeric attributes: size of the string, 
number of lowercase letters, capital letters, numbers For 
the detection of malicious PDF files, we have extracted 
120 digital attributes, similar to those presented in the 
work of Smutz and Stavrou [19, 20], which we can group 
into three categories: 

- file metadata (for example the author, or the date of 
creation); 

- file structure (for example the number of objects, or 
the average size of the objects); 

- objects and keywords used in the file (for example 
the types of objects, or the number of image objects). 

C. Selection of the type of classification model 

All the intelligence of supervised learning lies in 
optimizing the parameters of the classification model from 
the training data for which the labels are known. This 
optimization phase is theoretically complex, but the great 
popularity of machine learning has gradually simplified its 
use with the emergence of many dedicated libraries 
(scikit-learn in python, Spark, Mahout or Weka in java, or 
Vowpal Wabbit in C ++ for example), and solutions 
online like Google Cloud ML, Microsoft Azure or 
Amazon Machine Learning. This makes it easy to learn 
various classification models from learning data. Neural 
networks are so popular [8], especially thanks to their 
extraordinary results in computer vision, that the 
amalgamation between deep learning and machine 
learning is often made. Neural networks are only one type 
of classification model, and there are many others: 
decision trees, random forests (or Random Forests), k 
nearest neighbors, discriminating linear or quadratic 
analyzes, regressions logistics, support vector machines 
(or SVM for Support Vector Machine) or naive Bayesian 
classification to name a few. It is therefore necessary to 
choose a type of classification model suited to the 
detection problem considered, and meeting the 
operational constraints of the detection systems mentioned 
in section 2. Linear classification models, such as logistic 
regression or support vector machines, are adapted to 
intrusion detection and we now detail how they respond to 
operational constraints. Fast predictions Most 
classification models have a learning phase which is very 
costly in computation time and which is carried out line 
but applying the model to new data is usually extremely 
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fast. This is the case of linear classification models whose 
application is in O (d) where d is the number of attributes 
describing each instance. On the other hand, certain 
models, described as lazy, are to be avoided for intrusion 
detection. Indeed, they do not have a learning phase, and 
the entire learning data is therefore considered during the 
prediction phase. For example, the k nearest neighbors is a 
lazy model not suitable for intrusion detection. To predict 
the label of a new instance, you have to look for its k 
closest neighbors among all the training data, and then the 
predicted label is the one most represented. The 
predictions of this classification model have a time 
complexity in O (nd) which depends on the number of 
attributes d, but also on the number of training data n. 
However, in machine learning, it is desirable that n be 
large, and n increase over time when new instances are 
reinjected into the model following the analysis of the 
alerts generated. The prediction time of this classification 
model is far too long to be used in a detection system. 

Periodic updating of the model When a detection 
system is in production, the security operator ensures its 
supervision by analyzing the alerts generated. Their 
primary purpose is to identify false alarms, but also to 
take the necessary action in the event of a security 
incident. However, their analyzes, both false and true 
positive, can be incorporated into the detection model to 
improve its detection capabilities. It is therefore essential 
that the model can be updated periodically without 
reconsidering the entirety of the training data used 
previously. Linear models perfectly meet this constraint. 
They can be learned in batch mode initially but can also 
be updated incrementally by taking into account only the 
new labeled data. Interpretable model Linear models have 
the great advantage of being interpretable. Thus, the 
administrator of the detection system can interpret the 
detection model, that is to say understand how he makes 
his decisions, before putting it into production in order to 
check its consistency. Then, the operator supervising the 
detection system can know the main causes responsible 
for generating an alert. 

6. VALIDATION ON LEARNING DATA 

We would like to point out that the performance of the 
detection model on its learning data is not a good 
evaluation of the model. Indeed, the goal of a detection 
model is not to correctly classify training data, but to be 
able to generalize, that is to say, to correctly classify data 
not used during its learning phase. However, analyzing 
the performance of the model on the training data can help 
detect the problem of under-learning. It is said that there is 
under-learning when the detection model has learned 
almost nothing from the training data. In this situation, the 
detection model behaves almost like a random generator. 
To diagnose under-learning, simply draw the ROC curve 
obtained on the training data and check that it is not too 
close to that of a random generator. The expert has two 
options to resolve the under-learning: add discriminating 

attributes or use a more complex type of classification 
model. When a model fails to discriminate between 
malicious and benign instances on learning data, it is often 
that the expert has not given good attributes as input. It is 
therefore necessary for it to resume the attribute extraction 
phase to add more discriminating characteristics. 
Sometimes the expert provided discriminating attributes, 
but the type of classification model chosen is not complex 
enough to discriminate against malicious instances of 
benign. Figure 6 (a) shows a two-dimensional dataset 
where a linear model is not complex enough to properly 
separate malicious instances from benign, whereas a 
quadratic model, slightly more complex, is perfectly 
suited (see Figure 6 (b)). However, using an extremely 
complex detection model is not a solution, because in this 
case we risk over learning. It is said that over-learning 
occurs when the classification model perfectly predicts the 
label of learning data, but is unable to correctly predict the 
label of new data. The over-learning problem can be 
diagnosed by analyzing the performance of the model on 
an independent validation set and is therefore presented in 
the following section. 

7. CONCLUSION 

In this article, we have described a methodology for 
solving the “black box” aspect often criticized by machine 
learning methods, and we illustrated it with a case study 
on the detection of malicious PDF files. Thanks to this 
methodology, it becomes possible to adapt machine 
learning to the reluctance of security experts, and to the 
constraints of intrusion detection systems. In particular, 
the article emphasizes the importance of the rigor of the 
model validation method before it goes into production. In 
fact, errors during the validation phase can overestimate 
the efficiency of a model, and therefore lead to unpleasant 
surprises during production. The validation methodology 
that we propose makes it possible to anticipate problems 
inherent in machine learning, and therefore to avoid 
additional costs linked to tests in production. 
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