

International Journal of Information Technology and Applied Sciences

E-mail:author’s email

 http://woasjournals.com/index.php/ijitas

A simple formalism Artificial intelligence-based to represent

knowledge in a multi-agent planning context

Imane Ben

 Higher Institute of Computer Science and Multimedia of Sfax, Tunisie

Abstract: At the start of the simulation, the agent knows nothing about how the dynamics of interaction with the environment

unfold, or what causes his sensations. He does not distinguish obstacles from free paths, and he does not know the consequences

implied by his actions. Under these conditions, the CALM mechanism was able to converge steadily towards the expected solution,

by building a model of the world adequate to represent the regularities of the environment, the regularities of its bodily sensations, as

well as to represent the influence regular actions on both. The agent learns about the consequences of his actions in different

situations, which are represented by a reduced number of very general diagrams. From them, the mechanism can build an action

policy that allows it to avoid affectively negative situations and to seek those that are affectively positive. This solution manages to

describe precisely all the regularities that the agent can perceive without building a complete plan of the environment.

Keywords: Artificial intelligence, CALM., machine learning.

1. INTRODUCTION

Intrusion detection systems are traditionally based on
signatures generated manually by security experts.
However, Big Data, artificial intelligence, Machine
Learning (automatic learning in French) or Deep Learning
(deep learning in French) are often presented as
technologies that can revolutionize intrusion detection
systems [1,5]. Indeed, these methods induce detection
rules automatically from data, and their generalization
capabilities allow them to detect malicious events that are
still unknown. Many research papers on the application of
machine learning to intrusion detection have been
published and often show exceptional results (detection of
malicious PDFs [6], of malicious executable files [4], or
botnets [2,3]). However, from an operational point of
view, there are still many reservations about the use of
machine learning in production:

- A detection system based on learning methods
automatic can it process in real time?

- Is the false positive rate of machine learning
methods, often presumed to be too high,
acceptable for them to be put into production?

- Machine learning is not the core business of a
security expert, yet it is on him that the
implementation of a detection system rests. How
can he trust these methods to put them into
production?

- Are the alerts generated by such a detection
system sufficiently interpretable to allow their
exploitation in production?

In this paper, we answer the questions mentioned

above by providing solutions so that machine learning

methods are not incompatible with operational

constraints, and that they can thus be integrated into

detection systems in addition to other methods. , like the

signatures. First, we briefly present the problem of

intrusion detection and give a general overview of

machine learning in this context (see section 2). Then, we

present a case study: the detection of malicious PDF files

(see section 3). This example will then be used to

illustrate good practices for learning and validating a

detection model, and to highlight pitfalls sometimes

omitted in academic publications (see sections 4 and 5).

Finally, we present the free SecuML tool (cf. section 6)

allowing in particular to build a detection model and to

validate it upstream of its production with the good

practices exposed in the paper.

2. INTRUSION DETECTION AND MACHINE

LEARNING

The role of an intrusion detection system is to detect
malicious events through the network and system
activities that it analyzes. A suspicious event can be the
recovery of a malicious file attached to an email or the
visit to a corrupt website for example.

2

Imane Ben: A simple formalism Artificial intelligence-based to represent knowledge in a multi-agent planning context

http://woasjournals.com/index.php/ijitas

The detection system administrator is notably
responsible for setting up detection methods, and for
developing them over time. The security operator
analyzes and qualifies the alerts in order to allow the
necessary measures to be taken to deal with any possible
security incidents. This work can be costly.

Intrusion detection systems are traditionally based on
signatures: detection rules constructed by an expert
following an in-depth analysis of malicious events. This
approach is effective against threats that have already
been observed and for which a signature has been
generated, but it is often ineffective in detecting new
threats. In addition, simple variations of the threat, such as
polymorphism [5], may be enough to render the signature
ineffective. Signatures are ubiquitous in current detection
systems, but detection methods with machine learning are
considered in addition to better detect new threats. In this
section, we present the two main categories of machine
learning methods that can complement the signature
approach: anomaly detection and supervised learning.

A. Anomaly detection

Anomaly detection is the first machine learning
method that has been applied to intrusion detection [2].
This approach only requires non-malicious data to build
the detection model. The model will then generate an alert
as soon as an event differs too much from the normal
behavior induced by the benign data initially provided.

Anomaly detection methods are very attractive
because they allow the detection of unknown threats.
They have no preconceptions about what is a malicious
event and are therefore prone to detect new threats. In
addition, putting them into production is often presented
as very simple: all you need is a benign dataset devoid of
malicious activity. Obtaining such a dataset is not easy in
practice, however, as there is no simple way to ensure that
there is no malicious activity. If the supposedly healthy
dataset contains malicious activity, this can distort the
learning of the model and prevent the detection of certain
threats. These detection systems are simple in principle,
but rarely in practice, and putting them into production
can be very complex. In addition, anomaly detection
methods raise alerts for abnormal events that are not
necessarily malicious. For example, an abnormal
transmission / reception ratio on HTTPS can be a sign of
data exfiltration, but can also be caused by the use of
certain social networks; popular websites can be the
source of seemingly abnormally large data traffic without
being malicious; and simple configuration errors can also
lead to behaviors triggering false alerts. Thus, these
detection methods often suffer from a high rate of false
positives. Finally, the detection of anomalies offers few
possibilities for taking into account expert knowledge.
Indeed, experts cannot guide these models by providing
examples of malicious events as they only take into
account mild events.

B. Supervised learning

Supervised learning responds to this need to integrate
expert knowledge. Indeed, a supervised detection model is
constructed from labeled data provided by the expert:
mild events, but also malicious events to guide the
detection model. The learning algorithm will
automatically look for the points allowing to characterize
each of the classes or to discriminate them to build the
detection model. Once the detection model is learned on a
training dataset, it can be applied automatically to detect
malicious events. Thanks to supervised learning, the
security operator supervising the detection system can
easily participate in improving the detection model based
on the alerts that he analyzes. Indeed, false alerts can be
reinjected to correct the detection model and thus avoid
generating the same false alerts in the future. The real
alerts can also be fed back into the model to let it follow
the evolution of the threat. Thus, security experts do not
give control of the detection system to an automatic
model, but they actively supervise it to improve its
performance over time [5].

Finally, supervised learning is guided by malicious
examples provided by the expert, which reduces the rate
of false positives compared to the detection of anomalies.
Supervised methods are therefore to be preferred when
labeled data are available to train the detection model.
However, these methods must be applied taking into
account the operational constraints of the detection
systems. The detection model must be able to process data
in real time, and the false positive rate must remain below
a certain threshold to prevent the security operator from
being overwhelmed by false alerts. Finally, the
administrator must have confidence in the model to put it
into production, and the operator must be able to
understand the alerts generated. In the rest of the paper,
we give a methodology so that machine learning meets
these constraints, and so that it can be integrated into
detection systems to better detect new threats.

3. CASE STUDY: DETECTING MALICIOUS PDF

FILES

In this section, we present the problem of detecting
malicious PDF files based on machine learning. The rest
of the article will use this case study to illustrate good
practices and highlight the pitfalls to avoid when using
machine learning to build a detection model.

A. Problem

The PDF format is an open document description
format, created by the Adobe company in 1993, aimed at
preserving the formatting regardless of the reading
software or the operating system used. Among other
things, it consists of a number of metadata such as the
author, the date of production, as well as objects of
different types referenced in a table called Xref. These
objects can be in particular text, images, video or even
JavaScript code. Its richness and the availability of readers

Int. J. Inf. Tec. App. Sci. 2, No.1, 1-6 (Jan-2020)

http://woasjournals.com/index.php/ijitas

on different platforms make it a format widely used in
most organizations for creating and exchanging electronic
documents. On the other hand, the volume of associated
specifications (more than 1,300 pages available publicly)
implies significant software complexity, amplified by
dependencies with numerous third-party libraries. Also,
this software is often subject to vulnerabilities, which
make PDF format even more attractive to attackers.

In the majority of cases, malicious PDF files are
forged by the attacker to exploit a vulnerability, in order
to execute code and compromise the victim's machine (for
example JavaScript code exploiting a vulnerability of the
JavaScript engine included in the reader, or a TTF font
exploiting an OS vulnerability). Among the elements that
we can try to locate to detect malicious PDF files, we can
note:

the presence of a malicious charge (a shellcode, etc.);

- Functions to deceive detection (obfuscation by
encryption, multiple encodings, concealment of
objects, etc.).

- The more or less realistic nature of the files
(malformations, low number of pages and / or
objects, etc.).

Supervised learning is preferred in the context of
intrusion detection systems (see section 2), and it is easy
to obtain benign and malicious PDF files using
Contagio3, VirusTotal4, or the Google search for
example. So we chose supervised learning to build a
model for detecting malicious PDF files. The following
section outlines the main steps in the use of supervised
learning, and describes the performance estimators for
properly evaluating a detection model.

B. Supervised learning

Two phases: learning and prediction Supervised
learning can be used for intrusion detection via a binary
classifier (see Figure 1). The classifier takes as input an
instance, a PDF file for example, and returns as output the
predicted label, benign or malicious (in green and red in
the figure). This classifier can also be called a detection
model in the context of intrusion detection.

Supervised learning has two main stages:

1. learning the classifier from labeled data.

2. use of the classifier to detect malicious instances.

4. APPROACH AND METHODOLOGY

Once the classifier is trained from the training data, it
can be used to predict the label of a PDF file. In practice,
most classifiers do not simply predict a binary value
(benign vs. malicious), but rather a probability of
maliciousness (see Figure 3). An alert is then generated
only if the probability of malicious attack is greater than
the detection threshold set by the administrator of the
detection system. In the example in Figure 3, an alert will

be raised for the PDF file considered only if the detection
threshold is less than 75%. The probability of malicious
acts predicted by the detection model makes it possible to
classify the alerts according to the trust of the model, and
therefore to define the priority of the alerts that the
operator supervising the detection system must deal with.
Performance estimators A detection model is not perfect;
it can make prediction errors. It is essential to validate it,
that is to say to measure the relevance of the alerts
generated, before putting it into production.

The best known performance estimator is the
classification error rate which is equal to the percentage of
poorly classified instances. However, in the case of
intrusion detection, the data is generally very
asymmetrical (with a small proportion of malicious
instances), and the error rate is not able to correctly
estimate the performance of a classifier. in this situation.
Here is an example showing the limits of the classification
error rate. We consider 100 instances: 2 malicious and 98
benign. In this situation, a foolish detection model that
always predicts benign will have a classification error rate
of only 2% when it is not able to detect the slightest
malicious instance. In order to correctly analyze the
performance of a detection model, the first step consists in
writing the confusion matrix which takes into account the
two types of possible errors: false positives, i.e. false
alerts lifted for benign instances, and false negatives, that
is, undetected malicious instances. Figure 2 explains the
content of a confusion matrix.

A detection model must be evaluated with these two
performance estimators taken together. Indeed, the rate of
false positives must be low so that the security operator
supervising the detection system is not overwhelmed by
false alerts. The detection rate must be high to avoid too
many threats remaining undetected. The detection
threshold determines the sensitivity of the detection:
lowering this threshold increases the detection rate, but
also the rate of false alerts. It is therefore set by the
detection system administrator according to the desired
compromise between detection rate and false positive rate.
The performance estimators that we have just presented
depend on the value of the detection threshold. Another
performance estimator, which has the advantage of being
independent of this threshold, is often used in detection:
the receiver efficiency function, more frequently referred
to as the ROC5 curve [9]. This curve represents the
detection rate as a function of the false positive rate for
various detection thresholds (see Figure 5). For a
threshold of 100%, the detection and false alarm rates are
zero, and for a threshold of 0% they are both at 100%. A
detection model is all the more efficient as its curve is
close to the upper left corner: a high detection rate for a
low rate of false alerts. The area under the ROC curve,
called AUC6, is often calculated to estimate the
performance of a detection model independently of the
detection threshold, and its value must be close to 1. A
classifier randomly predicting the probability of malicious
attack a for ROC curve the red line represented in figure

4

Imane Ben: A simple formalism Artificial intelligence-based to represent knowledge in a multi-agent planning context

http://woasjournals.com/index.php/ijitas

3. Thus, the ROC curve of a classifier must always be
above this line (otherwise a random classifier has better
performance ...), and the AUC is at a minimum 0.5. The
ROC curve is not only a performance estimator, but it also
allows the detection system administrator to choose the
detection threshold value according to the desired
detection rate or the tolerated false alarm rate. Generic
method Our presentation of supervised learning was based
on the example of the detection of malicious PDF files,
but the instance can also represent a DOC file, traffic
associated with an IP address or a web page for example.
Machine learning algorithms do not take raw instances as
input, but a representation in the form of vectors of digital
attributes7 of fixed size. Thanks to this representation of
instances, machine learning algorithms are generic and
can be easily applied to various intrusion detection
problems. The attribute extraction step is specific to each
detection problem. In the following section, we present
the main steps that must be taken to create a supervised
detection model by illustrating our remarks with the case
of the detection of malicious PDF files.

Figure 1. Wepp 125 x 125: Q-Learning x CALM 1.

Figure 2. Extensibility analysis.

Figure 3. Wepp 125 x 125: Q-Learning x CALM 2.

Figure 4. Wepp 125 x 125: Q-Learning x CALM 3.

5. HOW TO BUILD A DETECTION MODEL?

The first step before building a detection model with
machine learning is to define the target, i.e. what you want
to detect. This preliminary step was done for the problem
of detecting malicious PDF files in section 3.A. Then, to
create a detection model, you must:

- collect learning data containing benign and
malicious instances corresponding to the target.

- define the attributes to extract to represent the
instances in the form of digital vectors.

Choose a type of classification model adapted to
operational constraints. We now describe these three steps
with generic tips and examples from the PDF file case
study.

A. Obtain learning data

Building a supervised detection model requires
learning data for which the labels, benign or malicious,
are known. This training data must contain benign and
malicious instances corresponding to the detection target.
However, obtaining learning data is often expensive,

Int. J. Inf. Tec. App. Sci. 2, No.1, 1-6 (Jan-2020)

http://woasjournals.com/index.php/ijitas

because associating a label with instances requires the
knowledge of a security expert. There are publicly labeled
data sets for certain detection problems (Malicia project,
KDD99, kyoto2006, or Contagio for example), but for
other problems, a data annotation phase must precede the
construction of the model. This step can be tedious, but
the effectiveness of the model will be directly linked to
the composition of the learning game, this is why this step
should not be overlooked. There are a few main principles
to follow when building the learning game. First, it must
have a sufficient number of instances for the detection
model to be able to properly generalize benign and
malicious behavior. Typically, it seems very difficult to
learn a model if the training data contains less than a few
hundred instances for each label. Furthermore, care must
be taken not to have an overly unbalanced training data
set with a label representing a very small proportion of the
data. It is impossible to define general rules concerning
the minimum number of instances necessary to learn a
model, or the acceptable degree of imbalance, because
these values depend on the detection problem considered
and on the instances constituting the learning game.

In the case of detection of malicious PDF files, it is
easy to obtain a labeled data set, since this type of file is
popular and frequently used to propagate malicious code.
The experiences presented in this paper are based on two
data sets: Contagio (9,000 benign files and 11,101
malicious) and webPdf (2,078 benign files and 767
malicious). Contagio is a public dataset used in many
academic works, and we built webPdf from benign files
from the Google search engine and from malicious files
obtained on the VirusTotal platform.

B. Extracting discriminating attributes

This step consists in processing the data in order to
represent it in the form of vectors of digital attributes of
fixed size usable by the learning algorithms. Attributes are
digital characteristics extracted from the data that will
allow the decision making of the classifier: the more they
are discriminating for decision making, the more efficient
the classifier will be. It is therefore necessary to have a
good knowledge of the format and content of the data
considered, and to have well defined the detection target
to extract discriminating attributes. The attribute
extraction phase is specific to each detection problem, but
common techniques for extracting digital attributes can
often be applied. We present some classic methods of
extracting attributes, giving examples with the case of
PDF files.

PDF files contain two types of information that can be
used to generate attributes: metadata (author or date of
creation, for example), and a list of its objects. Some
information is already digital, or a simple transformation
can make it digital. For example, the file size is numeric
and the creation and modification dates can be
transformed into timestamps. However, other information,
such as the author or objects, is not numeric, and therefore
cannot be directly exploited by machine learning

algorithms. In addition, each PDF file has a variable
number of objects: how to represent this information in
the form of a vector of fixed size?

Character strings Discriminating information can take
the form of character strings. The extraction method that
we used consists in transforming a character string into a
vector of attributes where each attribute corresponds to a
family of characters (capital letters, small letters, or
numbers for example). The value of an attribute is
determined by the number of occurrences, or the
proportion, of this family in the character string. The
author of a PDF file is a character string that we have
transformed into 7 numeric attributes: size of the string,
number of lowercase letters, capital letters, numbers For
the detection of malicious PDF files, we have extracted
120 digital attributes, similar to those presented in the
work of Smutz and Stavrou [19, 20], which we can group
into three categories:

- file metadata (for example the author, or the date of
creation);

- file structure (for example the number of objects, or
the average size of the objects);

- objects and keywords used in the file (for example
the types of objects, or the number of image objects).

C. Selection of the type of classification model

All the intelligence of supervised learning lies in
optimizing the parameters of the classification model from
the training data for which the labels are known. This
optimization phase is theoretically complex, but the great
popularity of machine learning has gradually simplified its
use with the emergence of many dedicated libraries
(scikit-learn in python, Spark, Mahout or Weka in java, or
Vowpal Wabbit in C ++ for example), and solutions
online like Google Cloud ML, Microsoft Azure or
Amazon Machine Learning. This makes it easy to learn
various classification models from learning data. Neural
networks are so popular [8], especially thanks to their
extraordinary results in computer vision, that the
amalgamation between deep learning and machine
learning is often made. Neural networks are only one type
of classification model, and there are many others:
decision trees, random forests (or Random Forests), k
nearest neighbors, discriminating linear or quadratic
analyzes, regressions logistics, support vector machines
(or SVM for Support Vector Machine) or naive Bayesian
classification to name a few. It is therefore necessary to
choose a type of classification model suited to the
detection problem considered, and meeting the
operational constraints of the detection systems mentioned
in section 2. Linear classification models, such as logistic
regression or support vector machines, are adapted to
intrusion detection and we now detail how they respond to
operational constraints. Fast predictions Most
classification models have a learning phase which is very
costly in computation time and which is carried out line
but applying the model to new data is usually extremely

6

Imane Ben: A simple formalism Artificial intelligence-based to represent knowledge in a multi-agent planning context

http://woasjournals.com/index.php/ijitas

fast. This is the case of linear classification models whose
application is in O (d) where d is the number of attributes
describing each instance. On the other hand, certain
models, described as lazy, are to be avoided for intrusion
detection. Indeed, they do not have a learning phase, and
the entire learning data is therefore considered during the
prediction phase. For example, the k nearest neighbors is a
lazy model not suitable for intrusion detection. To predict
the label of a new instance, you have to look for its k
closest neighbors among all the training data, and then the
predicted label is the one most represented. The
predictions of this classification model have a time
complexity in O (nd) which depends on the number of
attributes d, but also on the number of training data n.
However, in machine learning, it is desirable that n be
large, and n increase over time when new instances are
reinjected into the model following the analysis of the
alerts generated. The prediction time of this classification
model is far too long to be used in a detection system.

Periodic updating of the model When a detection
system is in production, the security operator ensures its
supervision by analyzing the alerts generated. Their
primary purpose is to identify false alarms, but also to
take the necessary action in the event of a security
incident. However, their analyzes, both false and true
positive, can be incorporated into the detection model to
improve its detection capabilities. It is therefore essential
that the model can be updated periodically without
reconsidering the entirety of the training data used
previously. Linear models perfectly meet this constraint.
They can be learned in batch mode initially but can also
be updated incrementally by taking into account only the
new labeled data. Interpretable model Linear models have
the great advantage of being interpretable. Thus, the
administrator of the detection system can interpret the
detection model, that is to say understand how he makes
his decisions, before putting it into production in order to
check its consistency. Then, the operator supervising the
detection system can know the main causes responsible
for generating an alert.

6. VALIDATION ON LEARNING DATA

We would like to point out that the performance of the
detection model on its learning data is not a good
evaluation of the model. Indeed, the goal of a detection
model is not to correctly classify training data, but to be
able to generalize, that is to say, to correctly classify data
not used during its learning phase. However, analyzing
the performance of the model on the training data can help
detect the problem of under-learning. It is said that there is
under-learning when the detection model has learned
almost nothing from the training data. In this situation, the
detection model behaves almost like a random generator.
To diagnose under-learning, simply draw the ROC curve
obtained on the training data and check that it is not too
close to that of a random generator. The expert has two
options to resolve the under-learning: add discriminating

attributes or use a more complex type of classification
model. When a model fails to discriminate between
malicious and benign instances on learning data, it is often
that the expert has not given good attributes as input. It is
therefore necessary for it to resume the attribute extraction
phase to add more discriminating characteristics.
Sometimes the expert provided discriminating attributes,
but the type of classification model chosen is not complex
enough to discriminate against malicious instances of
benign. Figure 6 (a) shows a two-dimensional dataset
where a linear model is not complex enough to properly
separate malicious instances from benign, whereas a
quadratic model, slightly more complex, is perfectly
suited (see Figure 6 (b)). However, using an extremely
complex detection model is not a solution, because in this
case we risk over learning. It is said that over-learning
occurs when the classification model perfectly predicts the
label of learning data, but is unable to correctly predict the
label of new data. The over-learning problem can be
diagnosed by analyzing the performance of the model on
an independent validation set and is therefore presented in
the following section.

7. CONCLUSION

In this article, we have described a methodology for
solving the “black box” aspect often criticized by machine
learning methods, and we illustrated it with a case study
on the detection of malicious PDF files. Thanks to this
methodology, it becomes possible to adapt machine
learning to the reluctance of security experts, and to the
constraints of intrusion detection systems. In particular,
the article emphasizes the importance of the rigor of the
model validation method before it goes into production. In
fact, errors during the validation phase can overestimate
the efficiency of a model, and therefore lead to unpleasant
surprises during production. The validation methodology
that we propose makes it possible to anticipate problems
inherent in machine learning, and therefore to avoid
additional costs linked to tests in production.

REFERENCES

[1] BARANDIARAN, X. Behavioral Adaptive Autonomy: a
milestone on the ALife route to AI?. In: INTERNATIONAL
CONFERENCE ON ARTIFICIAL LIFE, ALIFE, 9th, 2004,
Boston, MA, USA. Proceedings… Cambridge, MA: MIT Press,
2004. p.514-521.

[2] BARANDIARAN, X.; MORENO, A. On what makes certain
dynamical systems cognitive. Adaptive Behavior, SAGE, v.14,
n.2, p.171-185, 2006.

[3] BARANDIARAN, X.; MORENO, A. Adaptivity: From
Metabolism to Behavior. Adaptive Behavior, SAGE, v.16, n.5,
p.325-344, 2008.

[4] BEER, R.D. A dynamical systems perspective on agent-
environment interactions. Artificial Intelligence, Elsevier, v.72,
p.173-215, 1995.

[5] BEER, R.D. Autopoiesis and Cognition in the Game of Life.
Artificial Life, MIT Press, v.10, p.10-309, 2004.

[6] BELLMAN, R. A Markovian Decision Process. Journal of
Mathematics and Mechanics, Bloomington: Indiana University
Press, v.6. p.679-684, 1957.

